K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

`sqrta+1>sqrt{a+1}`

`<=>a+2sqrta+1>a+1`

`<=>2sqrta>0`

`<=>sqrta>0AAa>0`

`sqrt{a-1}<sqrta`

`<=>a-1<a`

`<=>-1<0` luôn đúng

`sqrt6-1>sqrt3-sqrt2`

`<=>sqrt6-sqrt3+sqrt2-1>0`

`<=>sqrt3(sqrt2-1)+sqrt2-1>0`

`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng

10 tháng 8 2017

TA CÓ :0,(1)=1/9;nhân 9 mỗi vẽ =>0,(9)=1 (đccm)

10 tháng 8 2017

Cách 2 là ;0,(9).10=9,99999

>>>>0,(9).9=9,99999..-0,999999..=9>>>0,(9)=1

27 tháng 7 2017

a)Ta có:a.(a+1)chia hết cho 2

Giả sử a là một số chẵn

=>a+1 là một số lẻ

Vì a.(a+1)là một số chẵn =>Tích 2 số tự nhiên liên tiếp chia hết cho 2

b)tương tự

3 tháng 2 2020

(mình chỉ ghi gợi ý rồi bn tự làm nha)

a, gBMD nội tiếp đường tròn=> gBMD =90 độ

ABCD là hình vuông => gDOC = 90 độ 

=> tứ giác ODME nội tiếp => gODM + gOEM = 180 độ 

mà gOEM = gBEC => dpcm

b,gABM nội tiếp chắn cung AM

gACM nội tiếp chắn cung AM => gABM = gECM

gAMB nội tiếp chắn cung AB 

gBMC nội tiếp chắn cung BC

mà cung AB = cung BC ( AB = BC )

=>gAMB = gEMC 

=> hai tam giác đồng dạng vì có hai góc bằng nhau

4 tháng 2 2020

bạn nào giúp mình câu c với ạ! Cảm ơn nhiều!!

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0

a: Xét ΔPAE và ΔPCA có

góc PAE=góc PCA

góc APE chung

=>ΔPAE đồng dạng với ΔPCA

=>PA/PC=PE/PA

=>PA^2=PC*PE

b: Xét ΔMPE và ΔMBP có

góc MPE=góc MBP

góc PME chung

=>ΔMPE đồng dạng vơi ΔMBP

=>MP/MB=ME/MP

=>MP^2=ME*MB