Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo: Câu hỏi của Edogawa G - Toán lớp 8 - Học toán với OnlineMath
Chứng minh rằng:
\(\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x^2+3x+2\right)\)
Ta có\(\left(x+1\right)^{2n}⋮\left(n+1\right)\)(1)
\(\left(x+2\right)^n-1=\left(x+1\right)\left[\left(x+2\right)^{n-1}+\left(n+2\right)^{n-2}+...+1\right]\)
\(\Rightarrow\left(x+2\right)^n-1⋮\left(x+1\right)\)(2)
Từ (1) và (2)\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+1\right)\) (*)
Lại có\(\left(x+1\right)^{2n}-1\)
\(=\left[\left(x+1\right)^n+1\right]\left[\left(x+1\right)^n-1\right]\)
\(=\left[\left(x+1\right)^n-1\right]\left(x+2\right)\left[\left(x+1\right)^{n-1}-\left(x+1\right)^{n-2}+........+1\right]\)
\(\Rightarrow\left(x+1\right)^{2n}-1⋮\left(x+2\right)\)
Mà \(\left(x+2\right)^n⋮\left(x+2\right)\)
\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+2\right)\)(**)
Ta lại có (x+1) và (x+2) nguyên tố cùng nhau (***)
Từ (*);(**) và(***) \(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x^2+3x+2\right)\)
A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề
Ta có:
\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^2.\left(x+1\right)\)
\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^3\)
\(=x\left(x+1\right)^4+\left(x+1\right)^3\left(x+1\right)\)
\(=x\left(x+1\right)^4+\left(x+1\right)^4=\left(x+1\right)^4\left(x+1\right)=\left(x+1\right)^5\)