Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)
Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)
\(\Leftrightarrow2a+b+4c+d⋮7\)
\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)
\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)
Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)
\(=\left(5n+10\right)\left(n+4\right)⋮5\)
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
Đề sai rồi bạn
Nếu ta thử n=0 thôi ta sẽ có:
\(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(
\(n^7-n=n\left(n^6-1\right)=n\left(n^2-1\right)\left(n^2+n+1\right)\left(n^2-n+1\right)\)
Nếu n = 7k ( k thuộc Z ) thì n chia hết cho 7
Nếu n = 7k + 1 ( k thuộc Z ) thì \(n^2-1=49k^2+14k⋮7\)
Nếu n = 7k + 2 ( k thuộc Z ) thì \(n^2+n+1=49k^2+35k+7⋮7\)
Nếu n = 7k + 3 ( k thuộc Z ) thì \(n^2-n+1=49k^2+35k+7⋮7̸\)
Trong trường hợp nào cũng có một thừa số chia hết cho 7
Nên \(n^7-n⋮7\)với mọi số nguyên
Mạn phép sửa đề \(x^3\left(x^2-7\right)^2-36x\)
\(x\left(x^2\left(x^2-7\right)^2-36\right)=x\left(\left(x^2-7x\right)^2-6^2\right)=x\left(x^3-7x+6\right)\left(x^3-7x-6\right)=x\left(\left(x^3+1\right)-\left(7x+7\right)\right)\left(\left(x^3-x\right)-\left(6x-6\right)\right)=x\left(\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)\right)\left(x\left(x+1\right)\left(x-1\right)-6\left(x-1\right)\right)=x\left(x+1\right)\left(x^2-x-6\right)\left(x-1\right)\left(x^2+x-6\right)=x\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+3\right)\)chia ht 7
Híc :< mình gõ nhầm đề đấy ạ. Cảm ơn cậu!