\(x^{2002}+x^{2000}+1⋮x^2+x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Ta có
A = x\(^{2002}\)−x+x\(_{^{^{^{^{ }}}}}\)\(^{2000}\)−x2+x2+x+1
=(x\(^{2001-1}\))x+x2(x\(^{1998-1}\))+x2+x+1A
=x\(^{2002}\)−x+x\(^{2000}\)−x2+x2+x+1
=(x\(^{ }\)\(^{2001-1}\))x+x2(x\(^{1998-1}\))+x2+x+1
Ta lại có
x\(^{2001-1}\)x\(^{2001-1}\) và x\(^{1998-1}\)x\(^{1998-1}\) \(⋮\)x3−1x3−1\(⋮\)x2+x+1x2+x+1
=> đpcm
1 tháng 11 2020
Học tốt !
4 tháng 1 2018

đây là bài tổng quát nè bạn, áp dụng bài này nhé ^_^

https://olm.vn/hoi-dap/question/1123004.html

29 tháng 3 2020

b, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1994}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)

=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1994}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)

=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)=0\)

=> \(x-2004=0\)

=> \(x=2004\)

Vậy phương trình có tập nghiệm là \(S=\left\{2004\right\}\)

a) Sửa đề: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

Ta có: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)

nên x+36=0

hay x=-36

Vậy: x=-36

8 tháng 2 2017

\(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}=3\)

\(\Rightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)=0\)

\(\Rightarrow\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}=0\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=0\)

\(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\ne0\)

\(\Rightarrow x-2000=0\)

\(\Rightarrow x=2000\)

Vậy x = 2000

8 tháng 2 2017

Có : \(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}=3\)

\(\Leftrightarrow\)\(\left(\frac{x}{2000}-1\right)+\left(\frac{x+1}{2001}-1\right)+\left(\frac{x+2}{2002}-1\right)=0\)

\(\Leftrightarrow\) \(\frac{x-2000}{2000}+\frac{x-2000}{2001}+\frac{x-2000}{2002}=0\)

\(\Leftrightarrow\) \(\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=0\)

\(\Leftrightarrow\) \(x-2000=0\)

( vì \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)\ne0\) )

\(\Leftrightarrow\) \(x=2000\)

Vậy x = 2000 thì phương trình \(\frac{x}{2000}+\frac{x+1}{2001}+\frac{x+2}{2002}=3\)

15 tháng 8 2019

a) x^3+y^3>0=>x-y>0

x-y=x^3+y^3>x^3-y^3=(x-y)(x^2+xy+y^2)

=>x-y>(x-y)(x^2+xy+y^2) Do x-y>0 => 1>x^2+xy+y^2 =>1>x^2+y^2 b) a^2+b^2+ab+bc+ca<0 =>2a^2+2b^2+2ab+2bc+2ca<0 =>a^2+b^2-c^2+(a+b+c)^2<0 Mà (a+b+c)^2>=0 =>a^2+b^2-c^2<0 <=>a^2+b^2<c^2
5 tháng 3 2019

\(\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\Leftrightarrow\left(a+b\right)\left(x^4b+y^4a\right)=ab\left(x^4+y^4+2x^2y^2\right)\)

\(\Leftrightarrow x^4ab+y^4a^2+x^4b^2+y^4ab=x^4ab+y^4ab+2x^2y^2ab\)

\(\Leftrightarrow y^4a^2+x^4b^2=2x^2y^2ab\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Leftrightarrow\frac{x^2}{a}=\frac{y^2}{b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1001}=\left(\frac{y^2}{b}\right)^{1001}\Leftrightarrow\frac{x^{2002}}{a^{1001}}=\frac{y^{2002}}{b^{2011}}\)

Mà: \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\Leftrightarrow\left(\frac{x^2}{a}\right)^{1001}=\frac{1}{\left(a+b\right)^{1001}}\)

\(\Rightarrow\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\frac{2}{\left(a+b\right)^{1001}}\left(đpcm\right)\)

NV
5 tháng 3 2019

\(x^2+y^2=1\Rightarrow y^2=1-x^2\)

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{b.x^4+a.y^4}{ab}=\frac{1}{a+b}\)

\(\Leftrightarrow bx^4+ay^4=\frac{ab}{a+b}\Leftrightarrow bx^4+a\left(1-x^2\right)^2-\frac{ab}{a+b}=0\)

\(\Leftrightarrow bx^4+a\left(x^4-2x^2+1\right)-\frac{ab}{a+b}=0\)

\(\Leftrightarrow\left(a+b\right)x^4-2ax^2+a-\frac{ab}{a+b}=0\)

\(\Leftrightarrow\left(a+b\right)x^4-2ax^2+\frac{a^2}{a+b}=0\Leftrightarrow\left(a+b\right)\left[x^4-2.x.\frac{a}{a+b}+\left(\frac{a}{a+b}\right)^2\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(x^2-\frac{a}{a+b}\right)=0\Rightarrow x^2=\frac{a}{a+b}\) (do \(a+b\ne0\))

\(\Rightarrow y^2=1-x^2=\frac{b}{a+b}\)

\(\Rightarrow\) \(\frac{x^2}{a}=\frac{a}{a\left(a+b\right)}=\frac{1}{a+b}\) ; \(\frac{y^2}{b}=\frac{b}{b\left(a+b\right)}=\frac{1}{a+b}\)

Thay vào bài toán:

\(\frac{x^{2002}}{a^{1001}}+\frac{y^{2002}}{b^{1001}}=\left(\frac{x^2}{a}\right)^{1001}+\left(\frac{y^2}{b}\right)^{1001}=\left(\frac{1}{a+b}\right)^{1001}+\left(\frac{1}{a+b}\right)^{1001}=\frac{2}{\left(a+b\right)^{1001}}\)

Ta thực hiện : Phân tích đa thức thành nhân tử để xuất hiện đa thức chia :

Ta có : \(x^8+x+1\)

\(=\left(x^8-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)

Đến đây chỉ ra nó chia hết cho \(x^2+x+1\) rất dễ dàng.

4 tháng 12 2019

Cảm ơn bạn nhiều , bữa sau có bài tập gì mong bạn giúp đỡhehe

19 tháng 12 2017

b, ta có

8\((x)^{9}\)-\(9(x)^{8} +1 \)= (8x^9 -8x^8)-(x^8-1)

=8x^8(x-1)-(x-1)(x^7+x^6+x^5+...+x+1)

=(x-1)(8x^8-x^7-x^6-......-x-1)

=(x-1)[(x^8-x^7)+(x^8-x^6)+.....+(x^8-1)]

=(x-1)[x^7(x-1)+ x^6(x^2-1)+.......+(x-1).(x^7+x^6+.....+x+1)]

=(x-1)^2.[x^7+x^6(x+1)+x^5(x^2+x+1)+.....+(x^7+x^6+...+x+1)]

\(\Rightarrow\) C chia hết cho D(dpcm)

18 tháng 3 2020

\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)

18 tháng 3 2020

\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)

\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)