Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Ta có: với mọi số thực x
⇒ với mọi số thực x
⇒ với mọi số thực (ĐPCM)
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
Ta có: \(-x^2+3x-4\)
\(=-\left(x^2-3x+4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}< 0\forall x\)
$-x^2+3x-4\\=-x^2+2.x.\dfrac{3}{2}-\dfrac{9}{4}-\dfrac{7}{4}\\=-(x-\dfrac{3}{2})^2-\dfrac{7}{4}<0$
=> ĐPCM
Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1
Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)
Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)
Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)
Ta có : x - x2 - 1
= -(x2 - x + 1)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)
Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
Vậy x - x2 - 1 \(< 0\forall x\in R\)
a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x
Ta có:
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\) với mọi \(x\in R\)
b)Ta có:
\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)
\(=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\)với mọi số thực \(x\)
x2-x+1=x2-2.x.1/2+1/4-1/4+1
=(x-1/2)2+3/4
vì (x-1/2)2 luôn không âm
nên x2-x+1 luôn dương với mọi x
x^2-x+1>0
<=> x^2-2.x.1/2+1/4-1/4+1
<=> x^2-2x.1/2+1/4+3/4 >0
<=> (x-1/2)^2 +3/4>0(luôn đúng với mọi x vì (x-1/2)^2>0 với mọi x)
vậy x^2-x+1>0 với mọi x thuộc R.
Ta có: x2 - x +1= (x2-x+\(\dfrac{1}{4}\))+\(\dfrac{3}{4}\)
= (x-\(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\)
Vì (x - \(\dfrac{1}{2}\))2 >= 0 với mọi x
nên (x - \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi x (đpcm)
\(x-x^2-1=-x^2+x-1=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\in R\)
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\in R\)
\(\Rightarrow x-x^2-1< 0\forall x\in R\left(đpcm\right)\)
$x-x^2-1$
$=-(x^2-x+1)$
\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
Vậy \(x-x^2-1<0\)\(\forall x\in R\) \(\left(ĐPCM\right)\)