Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = ax2 + bx + c
vì f(5) = f(-5) nên 25a2 + 5b + c = 25a2 - 5b + c
suy ra : 5b = -5b ; 5b + 5b = 0 ; 10b = 0 ; b = 0
Vậy f(x) = ax2 + c .
Ta có f(-x) = a(-x)2 + c = ax2 + c
do đó f(x) = f(-x)
f(x) = ax
2 + bx + c
vì f(5) = f(-5) nên 25a
2 + 5b + c = 25a
2
- 5b + c
suy ra : 5b = -5b ; 5b + 5b = 0 ; 10b = 0 ; b = 0
Vậy f(x) = ax
2 + c .
Ta có f(-x) = a(-x)2 + c = ax
2 + c
do đó f(x) = f(-x)
\(M=x^4-x-\left(x^3-1\right)+x^2=x\left(x^3-1\right)-\left(x^3-1\right)+x^2\)
\(M=\left(x-1\right)\left(x^3-1\right)+x^2=\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\)
\(M=\left(x-1\right)^2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right)+x^2\)
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\\x^2\ge0\end{matrix}\right.\) \(\Rightarrow M\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại \(x\) thỏa mãn
\(\Rightarrow M>0\) \(\forall x\in R\)
Ơ nhưng tại sao đang x(x³-1) xog cái đc luôn(x-1) z ạ?? Xin lỗi mk hơi ngu=33
Nhận thấy \(\hept{\begin{cases}x^4\ge0\forall x\\x^2\ge0\forall x\end{cases}}\Rightarrow x^4+x^2\ge0\Rightarrow x^4+x^2+4\ge4>0\forall x\)
=>A(x) > 0 \(\forall x\inℝ\)
A(x)=x4+2x2+4
=x4+x2+x2+1+3
=x2.(x2+1)+(x2+1)+3
=(x2+1)(x2+1)+3
=(x2+1)+3>0 với mọi x thuộc R
a) Thay f(3) vào hàm số ta có :
y=f(3)=4.32-5=31
Thay f(-1/2) vào hàm số ta có :
y=f(-1/2)=4.(-1/2)2-5=-4
b) Thay x=-1 vào hàm số ta có : 4.(-1)2-5=-1
=> f(-1) với x=-1