Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Text
\(VT=\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^2+y^2+z^2}\)
\(=\dfrac{8}{4\left(xy+yz+xz\right)}+\dfrac{4}{4\left(xy+yz+xz\right)}+\dfrac{4}{2\left(x^2+y^2+z^2\right)}\)
\(\ge\dfrac{8}{4\cdot\dfrac{\left(x+y+z\right)^2}{3}}+\dfrac{\left(2+2\right)^2}{2\left(x+y+z\right)^2}\)
\(=\dfrac{8}{4\cdot\dfrac{1^2}{3}}+\dfrac{\left(2+2\right)^2}{2\cdot1^2}=14\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
\(x^2-xy+y^2+1>0\)
\(\Leftrightarrow x^2-xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x^2-xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left[x^2-2\cdot x\cdot\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\right]+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)( đúng với ∀ x, y ∈ R )
=> đpcm
Ta có : \(x^2+2y^2+2xy+y+1\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x,y\)
lớp 8 thì còn lằng nhằng lớp 10 quá đơn giản
\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)
BĐT bạn ghi ngược rồi, BĐT đúng phải là:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{8}{\left(x+y\right)^2}\)
Chứng minh:
Ta có: \(\left(\frac{1}{x}\right)^2+\left(\frac{1}{y}\right)^2\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(\frac{4}{x+y}\right)^2=\frac{8}{\left(x+y\right)^2}\)
Dấu "=" xảy ra khi \(x=y\)
áp dụng bđt dang Engel
P=1/[x(x+y) ]+1/[y(x+y) ]
=1/(x+y). (1/x+1/y)
=1/(x+y). [(x+y) /xy]=1/(xy)
x+y≤1,x, y>0=>x.y≤1/4
p≥1/(1/4)=4
đẳng thức khi x=y=1/2