Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chứng minh bài toán theo cách quy nạp toán học.
Với n=2 suy ra:\(\frac{1}{3}+\frac{1}{4}>\frac{13}{14}\left(TM\right)\)
Giả sử bài toán trên đúng với mọi n=k,ta cần chứng minh nó đúng với n=k+1,tức là:
\(S_k=\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+....+\frac{1}{2\left(k+1\right)}>\frac{13}{14}\)
Thật vậy:
\(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{2\left(k+1\right)}\)
\(=\frac{1}{k+1}+\frac{1}{k+2}+....+\frac{1}{2k}+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)
\(=S_k+\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\)
\(>\frac{13}{14}+\frac{2k+2}{2\left(k+1\right)\left(2k+1\right)}+\frac{2k+1}{2\left(k+1\right)\left(2k+1\right)}-\frac{2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)
\(=\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)
để dễ hiểu,,mik xin viết thêm nha(không phải để kiếm điểm,có người nhờ nên mới thế này:))
\(\frac{13}{14}+\frac{2\left(k+1\right)+2k+1-2\left(2k+1\right)}{2\left(k+1\right)\left(2k+1\right)}\)
\(=\frac{13}{14}+\frac{1}{2\left(k+1\right)\left(2k+1\right)}>\frac{13}{14}\left(k>1\right)\)
\(\Rightarrow S_{k+1}>\frac{13}{14}\)
\(\Rightarrow S_k>\frac{13}{14}\)
Phép chứng minh hoàn tất_._

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)

\(N=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
=>\(N=\frac{13860}{41580}+\frac{10385}{41580}+\frac{8316}{41580}+\frac{11880}{41580}+\frac{9240}{41580}+\frac{7560}{41580}\)
=>\(N=\frac{61251}{41580}\)
=>N ko phải là số nguyên (đpcm)
HỌC TÔT :)

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!

\(a_1=1,a_2=1+\frac{1}{2},a_3=1+\frac{1}{2}+\frac{1}{3},...,a_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
\(\Rightarrow a_1< a_2< ...< a_n\left(\text{vì }n\inℕ,n>1\right)\)
\(\Rightarrow\frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_2\right)^2}+....+\frac{1}{\left(n.a_n\right)^2}< \frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_1\right)^2}+....+\frac{1}{\left(n.a_1\right)^2}\)
\(=\frac{1}{1}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+...+\frac{1}{\left(n-1\right)n}=2-\frac{1}{n}< 2\left(\text{vì }n\inℕ,n>1\right)\)
Vậy...
p/s: lần sau bạn viết đề rõ ra :((

mình không biết nhưng chi mình hỏi 1 câu này :
BẠN CHƠI ROBLOX À ???

Tính ra A là 2-(1/2)^2013. Phần còn lại thì quá dễ r
(Để tính A từ dãy trên ta nhân 2 lên thành 2A. Rồi lấy 2A-A=A=...)
\(A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+..............+\left(\frac{1}{2}\right)^{2013}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+.......+\left(\frac{1}{2}\right)^{2013}\Rightarrow2A-A=A=2-\left(\frac{1}{2}\right)^{2013}\)
\(VI:A+\left(\frac{1}{2}\right)^n=2\Rightarrow n=2013\)