\(\in\)N thì số 9\(^{2.n}\)-1 chia hết c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Ta có: \(9^{2n}\)luôn có chữ số tận cùng là 1

\(\Rightarrow9^{2n}-1\)luôn có chữ số tận cùng là 0.

\(\Rightarrow\)với \(n\in N\)thì số \(9^{2n}-1\)chia hết cho 2 và 5.

15 tháng 11 2022

Bài 2:

a: \(10^n-1=\left(10-1\right)\cdot A=9A⋮9\)

b: \(10^n+8=\left(10+8\right)\cdot C=18C⋮9\)

3 tháng 8 2016

a)

Ta có

\(351^{37}\) chia hết cho 9 vì 351 chia hết cho 9

\(942^{60}=\left(942^2\right)^{60}\)

Ta có

942 chia hết cho 3

Mà 3 là số nguyên tố

=> 9422 chia hết cho 32

=>  9422  chia hết cho 9

\(\Rightarrow\left(942^2\right)^{30}\) chia hết cho 9

=> đpcm

Cm chia hết cho 2

Vì \(351^{37}\) không chia hết cho 2 mà \(942^{60}\) chia hết cho 2

=> Sai đề

3 tháng 8 2016

a) Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 

ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 

mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 

=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 

=>942^60 - 351^37 chia hết cho 5 

b/ giải thích tương tự câu a ta có 

99^5 có c/số tận cùng là: 9 

98^4 có c/số tận cung là: 6 

97^3 có c/số tận cùng là: 3 

96^2 có c/số tận cùng là: 6 

=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0 

vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)

Bài 2: Nếu n = 0 => 5n - 1= 1 - 1 = 0 chia hết cho 4

Nếu n = 1 => 5n - 1 = 5 - 1 = 4 chia hết cho 3

Nếu n > 2 => 5n - 1 = (.....25) - 1 = (....24) có hai cs tận cùng là số chia hết cho 4 thì số đó chia hết cho 4

 

11 tháng 10 2017

a)Ta có\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}+2\equiv5\left(mod5\right)\)

                                            \(\Rightarrow3^{4n+1}+2⋮5\)

Vậy\(3^{4n+1}+2⋮5\)

b)Ta có\(2^4\equiv1\left(mod5\right)\Rightarrow2^{4n}\equiv1\left(mod5\right)\Rightarrow2^{4n+1}\equiv2\left(mod5\right)\)

\(\Rightarrow2^{4n+1}+3\equiv5\left(mod5\right)\Rightarrow2^{4n+1}+3⋮5\)

Vậy\(2^{4n+1}+3⋮5\)

c)Ta có\(9^2\equiv1\left(mod10\right)\Rightarrow9^{2n}\equiv1\left(mod10\right)\)

\(\Rightarrow9^{2n+1}\equiv9\left(mod10\right)\Rightarrow9^{2n+1}+1\equiv10\left(mod10\right)\)

\(\Rightarrow9^{2n+1}+1⋮10\)

Vậy\(9^{2n+1}+1⋮10\)

11 tháng 10 2017

a) 34n + 1 + 2                                       

=(34)n x 3 + 2

= 81n x 3 + 2

...1 x 3 + 2

...5 chia hết cho 5

b) 24n+1 + 3

= (24)n x 2 + 3

= 16n x 2 + 3

...6 x 2 + 3

...5 chia hết cho 5

c) 92n + 1 + 1

= (92)n x 9 + 1

= 81n x 9 + 1

=...1 x 9 + 1

...0 chia hết cho 10

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.