Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
a) Ta có:
\(\frac{1}{n-1}-\frac{1}{n}=\frac{n-\left(n-1\right)}{n\left(n-1\right)}=\frac{1}{n\left(n-1\right)}>\frac{1}{n.n}=\frac{1}{n^2}\left(1\right)\)
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}< \frac{1}{n.n}=\frac{1}{n^2}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\frac{1}{n\left(n-1\right)}>\frac{1}{n^2}>\frac{1}{n\left(n+1\right)}\)
Hay \(\frac{1}{n-1}-\frac{1}{n}>\frac{1}{n^2}>\frac{1}{n}-\frac{1}{n+1}\) (Đpcm)
*với n chẵn
2^n=4^t
nếu t chẵn 4^t tận cùng luôn =6 vậy 2^n-1 luôn chia hết cho 5
nếu t lẻ 4^t tận cùng luôn =4 vậy 2^n+1 luôn chia hết cho 5
*với n lẻ
2^n=2^(2t+1 )=2.4^t chia 3 luôn dư 2 => 2^n+1 chia hết cho 3
1) Giải
Vì n thuộc N và n > 1
Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n
Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)
=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp
Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1
Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1
Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6
2) Giải
Ta có : n( n + 2 ) ( 25n2 - 1 )
=> n( n + 2 ) ( n2 + 24n2 - 1 )
=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]
=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2
=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)
Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n
vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp
=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3
ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)
Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)
Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1
Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{...1}{\left(n-1\right).n}\right)\)
\(N< \frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(N< \frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)
=> \(N< \frac{1}{4}\)(đpcm)
Ta có 1 n − 1 − 1 n = n − n + 1 n − 1 n = 1 n 2 − n . Do n 2 − n < n 2 ⇒ 1 n 2 − n > 1 n 2 ⇒ 1 n − 1 − 1 n > 1 n 2
Tương tự 1 n − 1 n + 1 = n + 1 − n n + 1 n = 1 n 2 + n . Do n 2 + n > n 2 ⇒ 1 n 2 + n < 1 n 2 ⇒ 1 n − 1 n + 1 < 1 n 2