\(x,y\) ta luôn có 

\(\left(x,y+1\righ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Các bạn ơi: khocroigianroi

3 tháng 6 2017

a.

\(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

ta có

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

=>ĐPCM

b.

ta có

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=>ĐPCM

9 tháng 6 2017

a, (x-1) (x2 +x+1)

= x3+x2+x-x2-x-1

= x3-1 (đfcm)

b, (x3+x2y+xy2+y3) (x-y)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

= x4-y4 (đfcm)

24 tháng 6 2016

a) Ta có:

\(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\) (đpcm)

b) Ta có:

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y+x^2y^2+xy^3+y^4=x^4+y^4\)

 

đăng lên làm j z

16 tháng 12 2019

Rút gọn giùm mik nha

24 tháng 7 2019

1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)

2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)

3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)

4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)

24 tháng 7 2019

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm

3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm

4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm

19 tháng 8 2021

1) = x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x - 1

    = 6x^2

2) = x^3 + 1 - ( x^3 - 1 )

    = x^3 + 1 - x^3 + 1

    = 2 

3) dài lắm thôi ko viết ( Bạn áp dụng cái NHÂN ĐA THỨC VỚI ĐA THỨC nhé )

 Học tốt ~