K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 6 2020

Đặt \(f\left(x\right)=25x^2+25y^2+9x^2+16y^2+144-72x-96y+24xy-72\)

\(=34x^2+41y^2-72x-96y+24xy+72\)

\(=34x^2+2\left(12y-36\right)x+41y^2-96y+72\)

\(a=34>0\)

\(\Delta'=\left(12y-36\right)^2-34\left(41y^2-96y+72\right)\)

\(=-1250y^2+2400y-1152=-2\left(25y-24\right)^2\le0;\forall y\)

\(\Rightarrow f\left(x\right)\ge0;\forall x;y\)

NV
20 tháng 4 2022

Đường tròn (C) có tâm \(I\left(\dfrac{3}{2};-2\right)\Rightarrow\overrightarrow{IM}=\left(-\dfrac{5}{2};5\right)=-\dfrac{5}{2}\left(1;-2\right)\)

Đường thẳng d tiếp xúc (C) tại M nên \(IM\perp d\Rightarrow d\) nhận (1;-2) là 1 vtpt

Phương trình tiếp tuyến d:

\(1\left(x+1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+7=0\)

25 tháng 7 2022

4x2+4y2+4xy>6y-4(1)

⇔4x2+4y2+4xy-6y+4>0(2)

⇔4x2+4xy+y2+3y2-6y+3+1>0

⇔(2x+y)2+3(y2-2y+1)+1>0

⇔(2x+y)2+3(y-1)2+1>0

+)(2x+y)2≥0

3(y-1)2≥0

→(2x+y)2+3(y-1)2≥0

→(2x+y)2+3(y-1)2+1≥1>0

BĐT(2) luôn đúng

 BĐT(1) luôn đúng

Vậy 

25 tháng 7 2022

Ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy

\Leftrightarrow (x^2 - 4xy + 4y^2) + 3(x^2 + 2x +1) \ge 0

\Leftrightarrow (x-2y)^2 + 3(x +1)^2 \ge 0 (luôn đúng với mọi xy).

Vậy với mọi xy ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy.

16 tháng 6 2017

Ta xét các phương án:

(I) có: 

(II) có:

(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.

phương trình này có:

Vậy chỉ (I) và (III) là phương trình đường tròn.

Chọn D.

a: (C): x^2-4x+4+y^2+6y+9=25

=>(x-2)^2+(y+3)^2=25

=>R=5; I(2;-3)

\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)

=>M thuộc (C)

vecto IM=(3;4)

Phương trình tiếp tuyến tại M là:

3(x-2)+4(y+3)=0

=>3x-6+4y+12=0

=>3x+4y+6=0

b: (d)//-3x+4y+3=0

=>(d): -3x+4y+c=0; I(2;-3)

d(I;(d))=5

=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)

=>|c-18|=25

=>c=43 hoặc c=-7

c: (d) vuông góc (-3x+4y+3)=0

=>(d): 4x+3y+c=0

I(2;-3)

\(d\left(I;\left(d\right)\right)=5\)

=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)

=>|c-1|=25

=>c=26 hoặc c=-24

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

Lời giải:

Tiếp tuyến $(d')$ cần tìm song song với $(d): x+y-3=0$ nên có dạng $x+y+m=0$

Viết lại PTĐTr $(C): (x-1)^2+(y+2)^2=8$

$\Rightarrow$ tâm $I(1;-2)$ và bán kính $R=2\sqrt{2}$

Vì $(d')$ là tiếp tuyến của $(C)$ nên: \(d(I, d')=R\Leftrightarrow \frac{|x_I+y_I+m|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Leftrightarrow |m-1|=4\Rightarrow m=5\) hoặc $m=-3$. TH $m=-3$ loại do trùng với $(d)$

Vậy PTTT cần tìm là $x+y+5=0$

21 tháng 12 2021

\(3x+4y=1\Leftrightarrow y=\dfrac{1-4y}{3}\)

\(\Rightarrow A=x^2+y^2\Leftrightarrow\left(\dfrac{1-4y}{3}\right)^2+y^2=\dfrac{\left(4y-1\right)^2}{9}+y^2=\dfrac{16y^2-8y+1+9y^2}{9}=\dfrac{25y^2-8y+1}{9}=\dfrac{\left(5y\right)^2-2.5y.\dfrac{4}{5}+\left(\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}=\dfrac{\left(5y-\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}\ge\dfrac{\dfrac{9}{25}}{9}=\dfrac{1}{25}\left(đpcm\right)\)

\(A_{min}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{25}\\x=\dfrac{3}{25}\end{matrix}\right.\)

22 tháng 12 2021

Áp dụng Bunhiacopski:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=1\\ \Leftrightarrow25\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\dfrac{1}{25}\)

Dấu \("="\Leftrightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3x+4y}{9+16}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{25}\\y=\dfrac{4}{25}\end{matrix}\right.\)

13 tháng 4 2018