Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : Nếu \(n\text{ }⋮\text{ }5\)
\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)
Lời giải:
Điều phải chứng minh tương đương với việc tồn tại vô số số $n$ sao cho \(p|2^n-n\) với mọi \(p\in\mathbb{P}\)
Ta sẽ chỉ là một dạng tổng quát của $n$
------------------------------------------
Vì theo định lý Fermat nhỏ ta \(2^{p-1}\equiv 1\pmod p\)
\(\Leftrightarrow p|2^{p-1}-1\)
Do đó đặt \(n=k(p-1)\)
Khi đó \(2^n-n=2^{k(p-1)}-k(p-1)\equiv 1+ k\pmod p\)
Để \(p|2^n-n\Rightarrow 1+k\equiv 0\pmod p\Leftrightarrow k=pt-1\)
Vậy \(p|2^{(pt-1)(p-1)}-(pt-1)(p-1)\forall p\in \mathbb{P}\)
Nghĩa là tồn tại vô hạn số n có dạng \((pt-1)(p-1)\) với $t$ là số tự nhiên nào đó thỏa mãn điều kiện đề bài.
Ta có đpcm.
a) A ⊂ C Ta có x chia hết cho 12 => x chia hết cho 3 và 4 => đpcm
B ⊂ C Ta có x chia hết cho 12 mà 12 chia hết cho 6 => đpcm
b) A ∪ B = { x ∈ N | x chia hết cho 4 và x chia hết cho 6 }
Vì x chia hết cho 6 và 4 => x chia hết 12 => đpcm
c ) Với x=4 thì x chia hết cho 4 thỏa mãn A
x không chia hết cho 6 không thỏa mãn B
=>A không phải là con của B.
Lời giải:
Theo đề bài ta có \((a_i,p)=1\) với \(i=\overline{1,n}\)
Do đó áp dụng định lý Fermat nhỏ ta có:
\(a_i^{p-1}\equiv 1\pmod p\)
\(\Leftrightarrow a_i^{(p-1)k_i}\equiv 1^{k_i}\equiv 1\pmod p\)
Suy ra:
\(A=p_1a_1^{(p-1)k_1}+p_2a_2^{(p-1)k_2}+...+p_na_n^{(p-1)k_n}\equiv p_1+p_2+...+p_n\pmod p\)
Do đó:
\(A\vdots \Rightarrow p_1+p_2+...+p_n\vdots p\)
\(p_1+p_2+....+p_n\vdots p\Rightarrow A\vdots p\)
Điều này tương đương với: \(A\vdots p\Leftrightarrow \sum p_i\vdots p\)
Ta có đpcm.
ta xét hai khả năng
1. nếun⋮3n⋮3 thì (n3+2n)⋮3(n3+2n)⋮3
2.nếu n không chia hết cho 3 thì n có dạng n=3k+1n=3k+1 hoặc n=3k+2
với k thuộc N
Với n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)
=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3
Với n=3k+2⋮(n3+2n)=(3k+2)3+2(3k+2)n=3k+2⋮(n3+2n)=(3k+2)3+2(3k+2)
=27k3+54k2+36k+8+6k+4=3(9k3+18k2+14k+4)⋮3
Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)
Vậy khẳng định đúng với n=1.
Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)
Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:
\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)
\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)
\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)
Mà \(\left(m^3+3m^2+5m\right)⋮3\)
\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)
Do đó khẳng định đúng với n=m+1.
Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)
\(\forall n\ge1,n\in N\)
Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)
Vì n(n+1) (n+2) tích của 3 số tự nhiên liên tiếp
=> n( n+1) (n+2) chia hết cho 3
và 3n c hia hết cho 3
=> \(n^3+3n^2+5n\) chia hết cho 3
a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)
Chia hết cho 10
b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)
\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)
Cái này chia hết cho 5