Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
n⁴ + 6n³ + 11n² + 6n
= n⁴ + 2n³ + 4n³ + 8n² + 3n² + 6n
= (n⁴+2n³) + (4n³ + 8n²)+(3n² + 6n)
= n³(n+2) + 4n²(n+2) + 3n(n+2)
= (n+2)(n³+4n²+3n)
= (n+2)n(n²+3n)
= n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n⁴+2n³+4n³+8n²+3n²+6n chia hết cho 24.
Chúc bạn học tốt😊😊. kk mình nha😅😅
Giả sử \(n^2+11n+39⋮49\) \(\Rightarrow4n^2+44n+156⋮49\)
\(\Rightarrow4n^2+44n+156⋮7\) \(\Leftrightarrow4n^2+2.2n.11+121+35⋮7\)
\(\Leftrightarrow\left(2n+11\right)^2+35⋮7\) mà \(35⋮7\) nên \(\left(2n+11\right)^2⋮7\) mà 7 là số nguyên tố
\(\Rightarrow\left(2n+11\right)^2⋮49\) \(\Rightarrow4n^2+4n+121⋮49\) mà
\(4n^2+4n+121+35⋮49\) nên \(35⋮49\) => vô lý vậy điều giả sử là sai
vậy n^2+11n+39 không chia hết cho 49
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
(n4+6n3+11n2+6n)+24n-24n
= (n4+n3+5n3+5n2+6n2+6)+24.(n-1)
= (n+1)(n3+5n2+6n)+24.(n-1)
=n(n+1)(n2+5n+6)+24.(n-1)
= n(n+1)(n2+3n+2n+6)+24(n-1)
=n(n+1)(n+2)(n+3)+24(n-1)
Vi 4 so tu nhien lien tiep chia het cho 24
=> n(n+1)(n+2)(n+3)⋮24 va 24(n-1)⋮24
=> dpcm