Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=405^n+2^{405}+17^{37}\left(n\in N\right)\)
\(\Rightarrow A=\overline{.....5}+2^{4.101}.2+17^{4.9}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....6}.2+\overline{.....1}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....2}+\overline{.....7}\)
\(\Rightarrow A=\overline{......4}\)
Vì chữ số tận cùng của \(A\) là \(4\)
Nên \(A=405^n+2^{405}+17^{37}\) không chia hết cho \(10\)
\(\Rightarrow dpcm\)
Ta có :
2x + 6y = 2x + 2.3y = 2.(x + 3y) chia hết cho 2 với mọi số tự nhiên x và y
Ta có:
2x + 6y = 2.3y.(x + 3y) chia hết cho mọi số tự nhiên x và y
a)Vì 2 chia hết cho 2 nên 2x chia hết cho 2, 6 chia hết cho 2 nên 6y chia hết cho 2. 2 số chia hết cho 2 có tổng chia hết cho 2 nên x và y nhân với 2 và 6 thì luôn chia hết cho 2
b)Vì 3 chia hết cho 3 nên 3x chia hết cho 3, 12 chia hết cho 3 nên 12y chia hết cho 3. 2 số chia hết cho 3 có tổng chia hết cho 3 nên x và y nhân với 3 và 12 thì luôn chia hết cho 3
c)Vì 5 chia hết cho 5 nên 5x chia hết cho 5, 10 chia hết cho 5 nên 10y chia hết cho 5. 2 số chia hết cho 5 có tổng chia hết cho 5 nên x và y nhân với 5 và 10 thì luôn chia hết cho 5
d) Vì 9 chia hết cho 9 nên 9x chia hết cho 9, 27 chia hết cho 9 nên 27y chia hết cho 9. 2 số chia hết cho 9 có tổng chia hết cho 9 nên x và y nhân với 9 và 27 thì luôn chia hết cho 9
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
đề bài sai rồi
ukm
thầy giáo cho đề thế mà