Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(=25.5^n+26.5^n+8.64^n\)
\(=5^n\left(25+26\right)+8.64^n\)
\(=5^n\left(59-8\right)+8.64^n\)
\(=59.5^n+8\left(64^n-5^n\right)\)
\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)
\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)
Vậy A chia hết cho 59 với mọi n tự nhiên
Ta có
\(8^2=64\equiv5\left(mod59\right)\Rightarrow\)\(8^{2n+1}\equiv5^n.8\left(mod59\right)\left(1\right)\)
\(5\equiv5\left(mod59\right)\Rightarrow\)\(5^{n+2}\equiv5^n.5^2\left(mod59\right)\left(2\right)\)
\(26\equiv26\left(mod59\right)\Rightarrow\)\(26.5^n\equiv26.5^n\left(mod59\right)\left(3\right)\)
Từ (1);(2);(3) \(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv5^n.5^2+26.5^n+5^n.8\left(mod59\right)\)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv5^n.\left(5^2+26+8\right)\left(mod59\right)\)
\(\Rightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv5^n.59\left(mod59\right)\equiv0\left(mod59\right)\)
Vậy \(5^{n+2}+26.5^n+8^{2n+1}⋮59\left(đpcm\right)\)
Chúc Hok tốt !!!!!!!!!!!!!!!!!
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )
\(n^2-n=\left(n-1\right)n⋮2\)
Vậy \(n^2-n\) chia hết cho 2
nếu \(n=0\) thì ta thấy bài toán đúng
giả sử \(n=k\) thì ta có : \(5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+3}+26.5^{k+1}+8^{2k+3}\)
\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)