K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

 Đặt UCLN ( n+2; n+3 ) = d

=> n + 2 chia hết cho d ; n + 3 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.

26 tháng 12 2021

b) gọi d = ƯCLN(2n + 3; 3n + 5)

--> 3(2n + 3) và 2(3n + 5) chia hết cho d

--> (6n + 10) - (6n + 9) chia hết cho d

--> 1 chia hết cho d

--> d = 1

--> 2n + 3 và 3n + 5 nguyên tố cùng nhau

26 tháng 12 2021

a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp

nên n+2 và n+3 là hai số nguyên tố cùng nhau

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

10 tháng 12 2018

a) Đặt UCLN ( n+2; n+3 ) = d

=> n + 2 chia hết cho d ; n + 3 chia hết cho d

=> n + 3 - n - 2 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> n + 2 và n + 3 là 2 số nguyên tố cùng nhau

b) Đặt UCLN ( 2n+3 ; 3n+5 ) = d

=> 2n + 3 chia hết cho d; 3n + 5 chia hết cho d

=> 3 ( 2n + 3 ) chia hết cho d ; 2 ( 3n + 5 ) chia hết cho d

=> 6n + 9 chia hết cho d; 6n + 10 chia hết cho d

=> 6n + 10 - 6n - 9 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau

1 tháng 12 2020

thăm tuy thiếu điều kiện d thuộc n* 

17 tháng 10 2021

\(a,\) Gọi \(d=ƯCLN\left(n+1;n+2\right)\)

\(\Rightarrow n+1⋮d;n+2⋮d\\ \Rightarrow n+2-n-1⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n+1;n+2\right)=1\) hay n+1 và n+2 ntcn

\(b,\) Gọi \(d=ƯCLN\left(3n+10;3n+9\right)\)

\(\Rightarrow3n+10⋮d;3n+9⋮d\\ \Rightarrow3n+10-3n-9⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy 3n+10 và 3n+9 ntcn

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.