K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

26 tháng 9 2017

a) \(n^2+4n+3\)

Vì n là số lẻ nên n : 2 dư 1

Gọi n = 2k + 1

Thay n = 2k + 1 vào \(n^2+4n+3\)

Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)

Thay n = 2k + 1 vào (1)

=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)

Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp

=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)

=> \(4\left(k+2\right)\left(k+1\right)⋮8\)

=> đpcm

26 tháng 9 2017

a) Ta có:

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)

Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.

=> \(n^3+4n+3⋮4.2=8\)

Vậy ...

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy

1 tháng 7 2019

\(2,n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ \(\Rightarrow\)n có dạng \(2k+1\), thay vào ta có :

\(\Rightarrow\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right).2k.\left(2k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì \(k\left(k+1\right)\left(k+2\right)\)là 3 số tự nhiên liên tiếp

 \(\Rightarrow k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(6\)

\(\Leftrightarrow8k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(48\)

\(\Rightarrow n^3+3n^2-n-3\)\(⋮\)\(48\)\(\left(đpcm\right)\)

3 tháng 7 2019

Đề câu 1  bài đầu tiên sai rồi em. VD như n=3 lẻ thì n^2+4n+8 =29 không chia hết cho 8

Đề bài đúng: \(n^2+4n+3\) chia hết cho 8 với mọi n lẻ

Chứng minh: 

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

Vì n lẻ nên : n=2k+1, k thuộc N

Ta có: \(n^2+4n+3=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

Vì (k+1) và (k+2) là hai số tự nhiên liên tiếp nên tích của nó sẽ chia hết cho 2

=> 4 (k+1)(k+2) chia hết cho 8

nên \(n^2+4n+3\)chia hết cho 8 với n là số tự nhiên lẻ.

17 tháng 9 2019

a) thay 2k+1 vào biểu thức ta có

a)=4k^2+4k+1+8k+4+3

=4k(k+1) + 8k +8

có: k(k+1) là 2 số nguyên liên tiếp => chia hết cho 2 => 4k(k+1) chia hết cho 8

có: 8k;8 chia hết 8

=>n^2+4n+3 chia hết cho 8

18 tháng 9 2019

b.Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

25 tháng 9 2017

A = n3-3n2-n+3 = n2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
Vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A \(⋮\) 16(1)
mặt khác:
A = n3-3n2-n+3 = n3 - n - 3(n2 - 1) = n(n+1)(n-1) - 3(n2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) 3 => A \(⋮\) 3
n = 3k + 1 => (n -1) \(⋮\) 3 => A \(⋮\) 3
n = 3k + 2 => (n+1) = 3k + 3 \(⋮\) 3
=> A \(⋮\) 3 (2)

Từ (1) và (2) => A \(⋮\) 3.16 = 48 (3; 16 là 2 số nguyên tố cùng nhau).

25 tháng 9 2017

Ta có:

\(n^3-3n^2-n+3\)

\(=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)

Thay \(n=2k+1\), ta có:

\(\left(2k+1+1\right)\left(2k\right)\left(2k-2\right)\)

\(=2k.2.2.k.\left(k+1\right)\left(k-1\right)\)

\(=8\left(k-1\right)k.\left(k+1\right)\)

Ta thấy k, k-1 ; k+1 là 3 số tự nhiên liên tiếp, mà 3 số tự nhiên liên tiếp thì chia hết cho 6.

=> \(n^3-3n^2-2+3⋮48\) với mọi số n lẻ.

Vậy ...