K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 

    

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu A:

Ta có:
\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n}{6}+\frac{3n^2}{6}+\frac{n^3}{6}\)

\(=\frac{2n+3n^2+n^3}{6}\)

Xét tử : \(2n+3n^2+n^3=n(n^2+3n+2)=n(n^2+n+2n+2)\)

\(=n[n(n+1)+2(n+1)]=n(n+1)(n+2)\)

\(n(n+1)(n+2)\) là tích của 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

Vì $n(n+1)$ là tích của 2 số nguyên liên tiếp nên \(n(n+1)\vdots 2\)

\(\Rightarrow n(n+1)(n+2)\vdots 2\)

\((2,3)=1\Rightarrow n(n+1)(n+2)\vdots (2.3=6)\)

Do đó: \(A=\frac{n(n+1)(n+2)}{6}\in\mathbb{Z}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Câu B:

Ta có:

\(B=\frac{n^4}{24}+\frac{6n^3}{24}+\frac{11n^2}{24}+\frac{6n}{24}\)\(=\frac{n^4+6n^3+11n^2+6n}{24}\)

Xét mẫu:

\(n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)

\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)

\(=n(n+1)(n^2+5n+6)=n(n+1)[n^2+2n+3n+6]\)

\(=n(n+1)[n(n+2)+3(n+2)]\)

\(=n(n+1)(n+2)(n+3)\)

Vì $n(n+1)(n+2)$ là tích 3 số nguyên liên tiếp nên \(n(n+1)(n+2)\vdots 3\)

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots 3\)

Vì $n,n+1,n+2,n+3$ là 4 số nguyên liên tiếp nên trong đó chắc chắn có một số chia $4$ dư $2$ , một số chia hết cho $4$

\(\Rightarrow n(n+1)(n+2)(n+3)\vdots (2.4=8)\)

Mà $(3,8)=1$ nên \(n(n+1)(n+2)(n+3)\vdots (8.3=24)\)

Do đó: \(B=\frac{n(n+1)(n+2)(n+3)}{24}\in\mathbb{Z}\) (đpcm)

a: \(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=a^2+4a+4-a^2+4a-4=8a⋮4\)

b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;0;3;-1\right\}\)

\(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-4\right)\left(2x-5\right)\left(7x+25\right)\)

\(x^m+3.y-x^m+1.Y^3-x^3.y^m+1+xy^m+3\)

\(\text{Phân tích thành nhân tử}\)

\(-\left(x^3y^m-xy^m-y^3-3y-4\right)\)

Câu 3 ko hiểu >o<

3 tháng 10 2016

hài bài khó quá mình cũng học lớp 8 nhưng kho lắm

28 tháng 12 2018

\(B=\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}\)

\(B=\frac{n^4+6n^3+11n^2+6n}{24}\)

\(B=\frac{n^4+2n^3+4n^3+8n^2+3n^2+6n}{24}\)

\(B=\frac{n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)}{24}\)

\(B=\frac{\left(n^3+n^2+3n^2+3n\right)\left(n+2\right)}{24}\)

\(B=\frac{n\left(n+1\right)\left(n+3\right)\left(n+2\right)}{24}\)

Lập luận là ra