Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(27xyz\le\left(x+y+z\right)^3\)
<=> \(\left(x+y+z\right)^3-27xyz\ge0\)
<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)
=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)0
<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)
<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz \(\ge0\)
mà x + y \(\ge2\sqrt{xy}\)
Thật vậy x + y \(\ge2\sqrt{xy}\)
=> (x + y)2 \(\ge\)4xy
<=> x2 - 2xy + y2 \(\ge\) 0
<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))
Tương tự ta được y + z \(\ge2\sqrt{yz}\)
z + x \(\ge2\sqrt{xz}\)
Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)
=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz \(\ge0\)
<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)
<=> x3 + y3 + z3 - 3xyz \(\ge0\)
<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2] \(\ge\)0 (đúng)
=> ĐPCM
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)
\(\Rightarrow xy+yz+zx=0\)
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=x^2+y^2+z^2+2.0\)
\(=x^2+y^2+z^2\left(đpcm\right)\)
B2) \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)
Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)
Cach tuong tu
AM-GM \(2+2yz=x^2+y^2+z^2+2yz=x^2+\left(y+z\right)^2\ge2x\left(y+z\right)\)
\(\Rightarrow1+yz\ge x\left(y+z\right)\Rightarrow x^2+x+yz+1\ge x\left(x+y+z+1\right)\)
\(\Rightarrow\frac{x^2}{x^2+x+yz+1}\le\frac{x}{x+y+z+1}\). Se cm \(x+y+z-xyz\le2\), that vay ap dung C-S
\(x+y+z-xyz=x\left(1-yz\right)+\left(y+z\right)\)\(\le\sqrt{\left[x^2+\left(y+z\right)^2\right]\left[\left(1-yz\right)^2+1\right]}\)
\(=\sqrt{2\left(1+yz\right)\left[\left(yz\right)^2-2yz+2\right]}=\sqrt{y^2z^2\left(yz-1\right)+4}\le2\)
\(\Rightarrow M\le\frac{x}{x+y+z+1}+\frac{y+z}{x+y+z+1}+\frac{1}{x+y+z+1}=1\)
Dau "=" xay ra khi x=y=1; z=0
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-yz\right)}\)
\(\Rightarrow\left(x^2-yz\right)y\left(1-yz\right)=\left(y^2-xz\right)x\left(1-yz\right)\)
\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2=xy^2-x^2z-xy^3z+x^2yz^2\)
\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+x^2z+xy^3z-x^2yz^2=0\)
\(\Rightarrow xy\left(x-y\right)-xyz\left(x-y\right)\left(x+y+z\right)+z\left(x-y\right)\left(x+y\right)=0\)
\(\Rightarrow\left(x-y\right)\left[xy-xyz\left(x+y+z\right)+xz+yz\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy+yz+zx=0\end{cases}}\)
Mà \(x\ne y\) nên \(xy+xz+yz-xyz\left(x+y+z\right)=0\)
\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Đpcm
Từ gt ta có : (x2 - yz)y(1 - yz) = (y2 - xz)x(1 - yz)
=> 0 = VT - VP = (x2y - x3yz - y2z - xy2z2) - (xy2 - xy3z - x2z - x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)
= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)(xy + yz + xz - xyz(x + y + z)]
Vì\(x\ne y\Rightarrow x-y\ne0\) nên xy + yz + xz - xyz(x + y + z) = 0 => xy + yz + xz = xyz(x + y + z)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
Ô hay, em vừa tìm ra một cách chứng minh cho BĐT (2) nè:
Do x, y, z có vai trò hoán vị vòng quanh, không mất tính tổng quát giả sử \(y=min\left\{x,y,z\right\}\)
\(VT-VP=\frac{27y\left(y-z\right)^2+\left(4x+16z-11y\right)\left(y+z-2x\right)^2}{4}\ge0\)
Cái này gọi là mò:D
Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)
Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Vậy ta có đpcm
Nguyễn Minh Phương trẻ trâu quá giỏi làm đi ko làm đc thì câm ko làm đc mà oai thì ăn chửi