Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hằng đẳng thức đáng nhớ ta có :
( n+2 )^2 - ( n - 2 )^2 = ( n^2 + 4n + 2^2 ) - ( n^2 - 4n + 2^2 )
= n^2 + 4n + 4 - n^2 + 4n - 4 = 8n
=> Chia hết cho 8
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)
đề đó mình nghĩ vậy
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(5\left(n^2+n+2\right)⋮5\)
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
a)
\(A=\left(n+3\right)^2-\left(n-1\right)^2\\ =n^2+6n+9-n^2+2n-1\\ =\left(n^2-n^2\right)+\left(6n+2n\right)+\left(9-1\right)\\ =8n+8\\ =8\left(n+1\right)⋮8\forall n\)
\(\Rightarrow A⋮8\forall n\)
a) Ta có : (n+3)^2 - (n-1)^2 = n^2 + 6n + 9 - n^2 + 2n - 1
= 8n + 8 = 8(n +1) chia hết cho 8 với mọi n nguyên
b) Ta có : (n+6)^2 - (n-6)^2 = n^2 + 12n +36 - n^2 +12n - 36
= 24n chia hết cho 24 với mọi n nguyên
nhớ nha
a) (n+3)2 _(n-1)2= n2+6n+9-n2+2n-1
=8n+8 chia hết cho 8
b) tương tự
Ta có:
\(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left[\left(n+2\right)+\left(n-2\right)\right]\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=2n\cdot4\)
\(=8n\)
Vì \(8n⋮8\)
\(\Rightarrow\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
Vậy...