K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2023

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)

\(=n\left(2n^2+2n+n+1\right)\)

\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n-2+3\right)\)

\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)

Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)

Do đó: \(3n\left(n+1\right)⋮3\)

\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)

2 tháng 9 2023

\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)

\(=n\left(2n^2-3n+1\right)\)

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(2n-1\right)\)

\(=n\left(n-1\right)\left(2n+2-3\right)\)

\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)

\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\) 

Ta có :

\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)

Ta lại có :

\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)

\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)

\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)

4 tháng 4 2015

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

2 tháng 1 2017

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm

30 tháng 7 2018

\(n^3-3n^2+2n\)

\(=n^3-n^2-2n^2+2n\)

\(=n^2\left(n-1\right)-2n\left(n-1\right)\)

\(=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)

3 tháng 10 2016

\(2n^3+3n^2+n\)

\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)

\(=2n^2\left(n+1\right)+n\left(n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

n chia 3 có thể dư 1 ; 2 hoặc không dư.

Nếu không dư, tích chắc chắn chia hết cho 3

Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3

Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3

Do đó tích trên luôn chia hết cho 2 và 3

Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6

Vậy ...

23 tháng 10 2016

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)

 

3 tháng 10 2016

2n3+3n2+n=(2n3+2n2)+(n2+n)=2n2(n+1)+n(n+1)=n(n+1)(2n+1)n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2.n chia 3 có thể dư 1 ; 2 hoặc không dư.Nếu không dư, tích chắc chắn chia hết cho 3Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3Do đó tích trên luôn chia hết cho 2 và 3Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6Vậy ... 

3 tháng 10 2016

TA CÓ : 

n^3 + 3n^2 + 2n = n( n^2 + 3n + 2) = n( n+1) (n+2). 
Mà n(n+1)(n+2) là một số chia hết cho 2 và 3, nên nó chia hết cho 6.

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

20 tháng 8 2017

Ta có:\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)=6n^2+31n+5-\left(6n^2+7n-5\right)\)

                                                                                           \(=38n+10\)

                                                                                              \(2\left(19n+5\right)⋮2\left(đpcm\right)\)

5 tháng 4 2016

A = 2n + 3n2 + n = n ( 2n2 + 3n + 1)

= n ( n+1) (2n+1 )

= n(n+1)[(n+2)+(n-1)]

=n(n+1)(n+2) + n(n+1)(n-1)

Vì mỗi số hạnh là tích 3 số nguyên liên tiếp => tồn tại ít nhất 1 số là B(2) và B(3) mà (2;3)=1=> mỗi số hạng đều chia hết cho 3.2=6

=> A chia hết cho 6

=> ĐPCM

k cho mk nka

5 tháng 4 2016

Có 2n3+3n2+n = 2n3+2n2+n2+n = 2n2(n+1)+n(n+1) = n(n+1)(2n+1)

Vì n và n+1 là 2 số nguyên liên tiếp => 1 trong 2 số là số chẵn => n(n+1) chia hết cho 2 (1)

Xét n= 3k, 3k+1, 3k+2 với k thuộc Z ta cũng đều ra chia hết cho 3 (2)

Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 6 => ĐPCM

\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)

\(=\left(5n+10\right)\left(n+4\right)⋮5\)