\(25n^5\)-  \(5n^3\)-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)

Ta thấy (1) chia hết cho 5 (2)

(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)

Ta chứng minh (1) chia hết cho 8

Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8

Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k+ 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8

=> (1) chia hết cho 8 (4)

Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120

27 tháng 3 2017

ai bit lam ko

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

4 tháng 4 2021

\(B=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

=> 2B = n ( n + 1 ) (I)

Ta có :

\(A=1^5+2^5+3^5+...+n^5\)

 \(\Leftrightarrow2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+...+\left(1+n^5\right)\)

Nhận thấy mỗi số hạng đều chia hết cho n + 1 nên 2A chia hết cho n + 1 (1)

Ta lại có : \(2A-2n^5=\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^5+2^5\right]+...\)chia hết cho n

=> 2A chia hết cho n (2)

Từ (1) và (2) => 2A chia hết cho n ( n + 1 ) (II)

=> Từ (I) và (II) => đpcm

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)

16 tháng 1 2017

Tạm cho k=3

17 tháng 1 2017

tớ thì nghĩ k=6

12 tháng 8 2020

\(a^5+29a=a^5-a+30a\)

Theo Fermat nhỏ thì \(a^5-a⋮5\) mặt khác \(a^5-a=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮6\)

nên \(a^5+29a⋮30\) ( điều phải chứng minh )