K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

a) = n^3 + n^2 + 2n^2 + 2n = n^2 ( n+1) + 2n (n+1) = (n+1)(n^2 + 2n) = n(n+1)(n+2)  là tích ba số nguyên liên tiếp nên  n3+3n2+2n chia hết cho 2 và 3 =>  n3+3n2+2n chia hết cho BCNN(2;3) hay  n3+3n2+2n chia hết cho 6 => đpcm

b)= (n^2 + n)(n^2+n-2) = (n+1)n(n-1)(n+2)  là tích 4 SN liên tiếp nên chia hết cho 3 và 8 =>  ( n2 + n-1 )2 - 1 chia hết cho BCNN(3;8) hay ( n2 + n-1 )2 - 1 chia hết cho 24 => đpcm

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

25 tháng 9 2019

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

26 tháng 12 2018

Ta có  n 2  (n + 1) + 2n(n + 1) = ( n 2  + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)

Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2

⇒ n(n + 1) ⋮ 2

n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3

⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1

vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n

15 tháng 10 2021

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số nguyên liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)

hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

18 tháng 10 2021

\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)

\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)

Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).

16 tháng 8 2015

Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\)  là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.

Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\)  là tích bốn số nguyên liên tiếp.

Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.