Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
Lời giải:
$2^{2n+1}=4^n.2\equiv 1^n.2\equiv 2\pmod 3$
$\Rightarrow$ đặt $2^{2n+1}=3k+2$ với $k$ tự nhiên.
Do đó:
$2^{2^{2n+1}}+3=2^{3k+2}+3=8^k.4+3\equiv 1^k.4+3\pmod 7$
$\equiv 7\equiv 0\pmod 7$
Mà với $n$ nguyên dương thì $2^{2^{2n+1}}+3>7$ nên $2^{2^{2n+1}}+3$ là hợp số.
Tham khảo:
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
CHÚC CẬU HỌC TỐT VÀ ĐẠT KẾT QUẢ CAO!
Gọi UCLN ( 3n+1 và 4n+1) là d
Ta có: 3n+1 chia hết cho d
4n+1 chia hết cho d
=> 4(3n+1) chai hết cho d
=> 3(4n+1) chia hết cho d
=> 12n+4 chia hết cho d
=> 12n+3 chai hết cho d
=> 12n=4- 12n+3 chia hết cho d
=> 1 chia hết cho d
=> d thuộc U(1)
=> d=1
=> đpcm
gọi UCLN(3n+1;4n+1) là d
=>3n+1 chia hết cho d=>4(3n+1) chia hết cho d => 12n+4 chia hết cho d
=>4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n+3 chia hết cho d
=>(12n+4)-(12n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(3n+1;4n+1)=1
=>nguyên tố cùng nhau
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> đpcm
Câu b và c lm tương tự
Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1
Bạn tham khảo câu trả lời của anh alibaba Nguyễn ở đây nhé:
https://olm.vn/hoi-dap/detail/77939936222.html
Câu hỏi của Nguyễn Thị Thảo - Toán lớp 7 - Học toán với OnlineMath