K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Ta có : 3^n+2 - 2^n+4 + 3^n + 2^n

= (3^n+2 + 3^n) - (2^n+4-2^n)

= 3^n-1.(3^3+3) - 2^n-1.(2^5-2) ( vì n nguyên dương nên n-1 >= 0 )

= 3^n-1.30 - 2^n-1.30

= 30.(3^n-1+2^n-1) chia hết cho 30

=> ĐPCM

Tk mk nha

19 tháng 4 2017

có \(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)=\(3^n.27-2.3^n+2^n.32-7.2^n\)=\(3^n\left(27-2\right)+2^n\left(32-7\right)\)

=\(25\left(3^n+2^n\right)⋮25\)

16 tháng 2 2020

        3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n

= 3n . ( 33 - 2 ) + 2n . ( 25 - 7 )

= 3n . 25 + 2n . 25

= 25. ( 3n + 2n )

Vì 25 \(⋮\)25

Nên 25. ( 3n + 2n ) \(⋮\)25

Vậy   3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n \(⋮\) 25

học tốt nhé bạn ^^

23 tháng 6 2015

giai duoc roi cam on nhiu

18 tháng 2 2016

cho mình cách làm bài 3 phần b ?

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

26 tháng 12 2015

Ta có:

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2 +1)-2^n(2^2 +1)

=3^n.10-2^n.5=3^n.10-2^(n-1).10

=(3^n-2^(n-1)).10 chia het cho 10

Tick nhé

22 tháng 11 2015

\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\)   chia hết cho 10

13 tháng 3 2017

8.2+2n+1 

=2n .(8+2)

=2n.10 chia hết cho 10

=> 8.2n +2n+1 chia hết cho 10

\(3^{n+3^{ }}-2.3^n+2^{n+5}-7.2^n\)

\(=3^n.\left(3^3-2\right)+2^n\left(2^5-7\right)\)

\(=3^n.25+2^n.25\)

=\(25.\left(3^n+2^n\right)\)chia hết cho 25

=>\(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)

k cho mình nhé

24 tháng 2 2016

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2+1)-2^n(2^2+1)

=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).