Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : 3^n+2 - 2^n+4 + 3^n + 2^n
= (3^n+2 + 3^n) - (2^n+4-2^n)
= 3^n-1.(3^3+3) - 2^n-1.(2^5-2) ( vì n nguyên dương nên n-1 >= 0 )
= 3^n-1.30 - 2^n-1.30
= 30.(3^n-1+2^n-1) chia hết cho 30
=> ĐPCM
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
có \(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)=\(3^n.27-2.3^n+2^n.32-7.2^n\)=\(3^n\left(27-2\right)+2^n\left(32-7\right)\)
=\(25\left(3^n+2^n\right)⋮25\)
3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n
= 3n . ( 33 - 2 ) + 2n . ( 25 - 7 )
= 3n . 25 + 2n . 25
= 25. ( 3n + 2n )
Vì 25 \(⋮\)25
Nên 25. ( 3n + 2n ) \(⋮\)25
Vậy 3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n \(⋮\) 25
học tốt nhé bạn ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : 8.2n + 1n + 1
= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)
= 23 + n . 1
Mà 23 + n luôn luôn ko chia hết cho10
Nên 8.2n + 1n + 1 ko chi hết cho10
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2 +1)-2^n(2^2 +1)
=3^n.10-2^n.5=3^n.10-2^(n-1).10
=(3^n-2^(n-1)).10 chia het cho 10
Tick nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
![](https://rs.olm.vn/images/avt/0.png?1311)
8.2n +2n+1
=2n .(8+2)
=2n.10 chia hết cho 10
=> 8.2n +2n+1 chia hết cho 10
\(3^{n+3^{ }}-2.3^n+2^{n+5}-7.2^n\)
\(=3^n.\left(3^3-2\right)+2^n\left(2^5-7\right)\)
\(=3^n.25+2^n.25\)
=\(25.\left(3^n+2^n\right)\)chia hết cho 25
=>\(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)
k cho mình nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)
Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).
b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)
Vì \(25⋮25\)
nên \(\left(3^n+2^n\right)\times25⋮25\)
Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).