K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

26 tháng 10 2018

áp dụng định lí fecma nhé bạn

26 tháng 10 2018

Theo định lí Fecma nhỏ,ta có:\(n^5-n\equiv0\left(mod5\right)\)

Do vậy \(n^5-n⋮5^{\left(đpcm\right)}\)

~ Học tốt nha bạn~

18 tháng 10 2018

   

      \(n^5-n\)

\(=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n^2-1\right)\)

Ta có số hạng đầu tiên là tích 5 số nguyên liên tiếp nên chia hểt cho 5, số hạng thứ 2 chia hết cho 5

Vậy \(n^5-n⋮5\)

22 tháng 7 2015

(n+7)2-(n-5)2

=[(n+7)+(n-5)][(n+7)-(n-5)]

=(n+7+n-5)(n+7-n+5)

=(2n+2).12

=2.(n+1).12

=24.(n+1) 

Vậy với mọi số nguyên n thì: (n+7)2 _ (n-5)2 chia hết cho 24 

12 tháng 6 2024

(n+7)^2-(n-5)^2

=n^2+14n+7^2-n^2+10n-5^2

=24n+24

24(n+1) chia hết cho 24

11 tháng 6 2020

Xét m,n có 1 số chia hết cho 5 thì A \(⋮\)5

Xét m,n  đều không chia hết cho 5

Ta có : với a \(⋮̸\)5 thì a có dạng : \(5k\pm1;5k\pm2\)

\(\Rightarrow a^4=\left(5k\pm1\right)^4=B\left(5\right)+1\)chia 5 dư 1

\(a^4=\left(5k\pm2\right)^4=B\left(5\right)+16=B\left(5\right)+1\)chia 5 dư 1

từ đó suy ra \(m^4\)chia 5 dư 1 ; \(n^4\)chia 5 dư 1

\(\Rightarrow m^4-n^4\)chia hết cho 5

\(\Rightarrow A⋮5\)

Vậy ....

11 tháng 6 2020

Ta có: \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

Xét \(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a^2-1\right)⋮5\)với mọi a nguyên bất kì

=> \(nm\left(m^4-1\right)=n\left[m\left(m^4-1\right)\right]⋮5\)với m nguyên 

\(nm\left(m^4-1\right)=m\left[n\left(n^4-1\right)\right]⋮5\)với n nguyên 

=> \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\) chia hết cho 5.

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

2 tháng 11 2016

(n+7)- (n-5)2 = n2+49 - n2+ 25 = 24 

vậy( n+7)- (n-5)2 chia hết cho 24