Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
\(\RightarrowĐPCM\)
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Xét số hạng tổng quát ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
Áp dụng vào bài tập, ta có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)
Ta có:\(\frac{1}{\left(k +1\right)\sqrt{k}}=\frac{\left(k+1\right)-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)
\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)
Cho k=1,2,,,,n rồi cộng vế với vế ta có;
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)+...\)
\(+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\)
Vậy bất đẳng thức được chứng minh