\(A=n^3+1964n⋮48\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

A=n(n^2+1964).

Do n chia hết cho 2 >>>đặt n=2k.

A=n(n^2+1964)=2k(4k^2+1964)=8k(k^2+491)

Xét k không chia hết cho 2 thì k^2+491 chia hết cho 2 suy ra A chia hết 16.

Xét k chia hết cho 2 suy ra 8k chia hết 16

>>>A luôn chia hết cho 16.(1)

Xét k chia hết cho 3 thì A chia hết cho 3.

Xét k không chia hết cho 3 >>>k^2 chia 3 dư 1 >>>k^2+491 chia hết cho 3

>>>A luôn chia hết cho 3(2)

Từ (1),(2)>>>A chia hết cho 3 và 16, mà (3,16)=1>>>A chia hết cho 48(đpcm)

3 tháng 9 2024

cho mình hỏi sao k^2+491 lại chia hết cho 3 vậy mình k biết thật 

8 tháng 11 2018

Vi a la so chan nen a co dang 2k nen : a3+6a2+8a

= 8k3+24k2+16k = 8.k.(k2+3k+2)=8k(k+1)(k+2)

vi k , k+1 , k+2 la 3 so lien tiep nen k.(k+1).(k+2) ⋮ 6

=> 8k(k+1)(k+2) ⋮ 6.8=48 ( dpcm)

NV
18 tháng 10 2019

\(n=2k\)

\(\Rightarrow A=n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)

\(=2k\left(2k-2\right)\left(2k+2\right)\)

\(=8k\left(k-1\right)\left(k+1\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\) là tích 3 số nguyên liên tiếp nên chia hết cho 6

\(\Rightarrow A⋮48\)

11 tháng 1 2024

\(n\) chẵn \(\Rightarrow n=2k\left(k\inℤ\right)\) 

Khi đó \(P=\dfrac{n}{12}+\dfrac{n^2}{8}+\dfrac{n^3}{24}\)

\(=\dfrac{k}{6}+\dfrac{k^2}{2}+\dfrac{k^3}{3}\)

\(=\dfrac{k+3k^2+2k^3}{6}\)

\(=\dfrac{k\left(2k^2+3k+1\right)}{6}\)

\(=\dfrac{k\left(2k+1\right)\left(k+1\right)}{6}\)

 Nhận thấy \(k,k+1\) là 2 số nguyên liên tiếp nên \(k\left(k+1\right)\left(2k+1\right)⋮2\)

 Nếu \(k\equiv0,2\left[3\right]\) thì dễ thấy \(k\left(2k+1\right)\left(k+1\right)⋮3\). Nếu \(k\equiv1\left[3\right]\) thì \(2k+1\equiv2.1+1=3\left[3\right]\) nên \(k\left(2k+1\right)\left(k+1\right)⋮3\)

 Do vậy, \(k\left(k+1\right)\left(2k+1\right)⋮6\). Suy ra đpcm.

10 tháng 1 2024
  • Phenis
  • 21/04/2021

Giải thích các bước giải:

A=n12+n28+n324�=�12+�28+�324

=2n+3n2+n324=2�+3�2+�324

=n(n2+3n+2)24=�(�2+3�+2)24

=n24(n2+3n+2)=�24⋅(�2+3�+2)

=n24[n(n+1)+2(n+1)]=�24[�(�+1)+2(�+1)]

=n(n+1)(n+2)24=�(�+1)(�+2)24

Vì n(n+1)(n+2)�(�+1)(�+2) là tích ba số nguyên liên tiếp nên chia hết cho 33

Lại có n là số chẵn, nên đặt n=2k�=2�, ta có:

n(n+1)(n+2)=2k(2k+1)(2k+2)=4k(k+1)(2k+1)�(�+1)(�+2)=2�(2�+1)(2�+2)=4�(�+1)(2�+1)

Do k(k+1)�(�+1) là tích hai số nguyên liên tiếp nên chia hết cho 2 và 4k(k+1)(2k+1)4�(�+1)(2�+1) chia hết cho 8

Vậy A chia hết cho 3 và 8, vậy A chia hết cho 24

A⇒� là số nguyên 

   
7 tháng 4 2019

n>4 nữa nha bạn

Ta có:\(A=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-3\right)\left(n^2-4\right)\)

\(=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)

Do n là số chẵn và n>4 nên đặt  \(n=2k+2\left(k>1\right)\).

\(\Rightarrow A=\left(2k+2\right)\left(2k+4\right)\left(2k-2\right)2k\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

\(=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)

Do  \(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên dương liên tiếp nên chúng chia hết cho 2.3.4=24

Vậy A chia hết cho 16*24=384(đpcm)

14 tháng 11 2016

Ta có: \(25n^5-5n^3-20n=5\left(n-1\right)n\left(n+1\right)\left(5n^2+4\right)\)(1)

Ta thấy (1) chia hết cho 5 (2)

(1) có 3 số tự nhiên liên tiếp nên chia hết cho 3 (3)

Ta chứng minh (1) chia hết cho 8

Với n lẻ thì (n - 1) và (n + 1) là hai số chẵn liên tiếp nên sẽ có 1 số chia hết cho 2 còn 1 số chia hết cho 4 nên (1) sẽ chia hết cho 8

Với n chẵn thì ta có n chia hết co 2 và (5n2 + 4) = (5.4k+ 4) =4(5k2 + 1) chia hết cho 4 nên (1) chia hết cho 8

=> (1) chia hết cho 8 (4)

Từ (2), (3), (4) ta có (1) chia hết cho 5.3.8 = 120

19 tháng 10 2017

Em mới hc lớp 7 thui cho nên ko bít làm đúng ko

Vì n^3 chia hết cho n^4 và 2n chia hết cho 3n mà dưới mẫu có cộng thêm 1 

Cho nên ps trên tối giản

30 tháng 4 2018

không biết

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Vì n là số lẻ => \(n-1;n+1;n+3\) là 3 số chẵn liên tiếp

Mà 3 số chẵn liên tiếp luôn \(⋮48\)

\(\Rightarrowđpcm\)

14 tháng 8 2019

\(n^3+3n^2-n-3\)

\(=n^2\times\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\times\left(n^2-1\right)\)

\(=\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)\)

Vì n là số lẻ nên \(n⋮̸2\)

\(\Rightarrow n+3⋮2;n-1⋮2;n+1⋮2\)

\(\Rightarrow\left(n+3\right)\times\left(n-1\right)\times\left(n+1\right)⋮48\)

\(\Rightarrow n^3+3n^2-n-3⋮48\)

\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=2-\frac{1}{n}\)

=>đpcm