K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Hướng dẫn giải:

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khá

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.



 \(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có

a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)\(\frac{AC^2}{BC^2}\)\(\frac{BC^2}{BC^2}\)=1

b,\(\frac{\sin\alpha}{\cos\alpha}\)\(\frac{AB}{BC}\)\(\frac{AC}{BC}\)\(\frac{AB}{AC}\)\(\tan\alpha\)

#mã mã#

13 tháng 9 2020

a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)

\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)

\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)

\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )

\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)

6 tháng 5 2016

vế trái =\(\frac{\sin}{1+\cot}\)+\(\frac{\cos}{1+\tan}\)\(\frac{sin}{1+\frac{cos}{sin}}\)+\(\frac{cos}{1+\frac{sin}{cos}}\)\(\frac{sin^2}{\sin+cos}\)+\(\frac{cos^2}{sin+cos}\)\(\frac{sin^2+cos^2}{sin+cos}\)=\(\frac{1}{sin+cos}\)= vế phải

25 tháng 6 2019

Lên mạng search ik! Vào Vietjack hay Loigiaihay đều có hết. :)

17 tháng 6 2016

a)\(tan3A=tan\left(A+2A\right)\)

\(=\frac{tanA+tan2A}{1-tanAtan2A}\)

\(=\frac{\frac{tanA+2tanA}{1-tan^2A}}{\frac{1-2tan^2A}{1-tan^2A}}\)

\(=\frac{\left(tanA-tan^3A+2tanA\right)}{1-tan^2A-2tan^2A}\)

\(=\frac{3tanA-tan^3A}{1-3tan^2A}\)

b)\(VT=cos^6A+sin^6A\)

\(=\left(cos^2A\right)^3+\left(sin^2A\right)^3\)

\(=\left(cos^2A+sin^2A\right)^3-3cos^2Asin^2A\left(cos^2A+sin^2A\right)^2\)

\(=1^3-3cos^2Asin^2A\left(1\right)^2\).Từ đó,\(sin^2A+cos^2A=1\)

\(=1-3cos^2Asin^2A=VP\)

18 tháng 6 2016

phần b tui sai

3 tháng 7 2017

\(\frac{\cos a-\sin a}{cosa+sina}=\frac{\frac{cosa}{cosa}-\frac{sina}{cosa}}{\frac{cosa}{cosa}+\frac{sina}{cosa}}\)(chia ca tu va mau cho cosa)

                \(=\frac{1-tana}{1+tana}=vt\left(dpcm\right)\)