Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT = 2x4 + 1 = (x4 + x2) + (x4 + 1) - x2 ≥ 2x3 + 2x2 - x2 = 2x3 + x2
Dấu "= xảy ra <=> x = \(\pm\) 1
Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
Nên mẫu số luôn luôn khác 0
Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)
\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x
Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
ta có
B=(x^2-2x+1)+[(3y)^2-6y+1]+1
B=(x-1)^2+(3y-1)^2+1
Mả (x-1)^2+(3y_1)^2 luôn luôn >=0
Vậy B mìn =1khi và chỉ khi x=1 va y=1/3
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Ta có : 9x2 - 6x + 5
= (3x)2 - 6x + 1 + 4
= (3x - 1)2 + 4
Mà : (3x - 1)2 \(\ge0\forall x\)
Nên : (3x - 1)2 + 4 \(\ge4\forall x\)
Suy ra : (3x - 1)2 + 4 \(>0\forall x\)
Vậy biểu thức sau luôn luôn dương
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
\(\Leftrightarrow2x^4-2x^3-x^2+1\ge0\)
\(\Leftrightarrow2x^3\left(x-1\right)-\left(x+1\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-x-1\right)\ge0\)
Tớ làm tới đây rùi, bạn tự làm tiếp nha