K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

Phương trình hoành độ giao điểm của (C) và đường thẳng (d) y = 2x + m là:

Giải bài 11 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

⇔ (2x + m)(x + 1) = x + 3

 

 

Vậy với mọi m ∈ R, (d) cắt (C) tại hai điểm phân biệt MN.

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
PT hoành độ giao điểm:

$\frac{-4x+12}{x+1}=2x+m$

$\Rightarrow -4x+12=(2x+m)(x+1)$

$\Leftrightarrow 2x^2+x(m+6)+m-12=0(*)$

Ta thấy:

\(2(-1)^2+(-1)(m+6)+m-12=-16\neq 0\)

$\Delta (*)=(m+6)^2-8(m-12)=m^2+4m+132=(m+2)^2+128>0$ với mọi $m$ 

$\Rightarrow (*)$ luôn có 2 nghiệm pb khác -1 với mọi $m$

Tức là $(d)$ cắt $(C)$ tại 2 điểm phân biệt với mọi $m$ (đpcm)

28 tháng 5 2022

2 ( − 1 ) 2 + ( − 1 ) ( m + 6 ) + m − 12 = − 16 ≠ 0

dòng này là sao vậy ạ?

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

31 tháng 3 2017

a) y=x+3x+1y=x+3x+1 có tập xác định : R\{-1}

y′=−2(x+1)2<0,∀x≠−1y′=−2(x+1)2<0,∀x≠−1

Tiệm cận đứng: x = -1

Tiệm cận ngang: y = 1

Bảng biến thiên:

Đồ thị hàm số:

b) Xét phương trình có nghiệm là hoành độ giao điểm của (C) và đường thẳng (d): y = 2x + m

(1)

x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1x+3x+1=2x+m⇔x+3=(2x+m)(x+1)⇔2x2+(m+1)x+m−3=0,x≠−1

Δ = (m+1)2 – 4.2(m-3) = m2 – 6m + 25 = (m-3)2 + 16> 0, Δm, nên (1) luôn có hai nghiệm phân biệt khác -1.

Vậy (d) luôn cắt (C) tại hai điểm phân biệt M, N (hoành độ của M, N chính là nghiệm của (1)).

 

 

29 tháng 5 2017

TenAnh1 C = (-4.24, -6.16) C = (-4.24, -6.16) C = (-4.24, -6.16) D = (11.12, -6.16) D = (11.12, -6.16) D = (11.12, -6.16) E = (-4.28, -6.08) E = (-4.28, -6.08) E = (-4.28, -6.08) F = (11.08, -6.08) F = (11.08, -6.08) F = (11.08, -6.08)
Vậy \(Min_{MN}=2\sqrt{3}\) khi \(m=3\).

4 tháng 11 2019

Đáp án DPhương trình hoành độ gaio điểm của đồ thị (C) và đường thẳng  

Gọi . Ta tính được khi m = 0

14 tháng 4 2016

\(\frac{x+2}{x+1}=x+m\Leftrightarrow\begin{cases}x\ne-1\\x^2+mx+m-2=0\left(1\right)\end{cases}\)

Phương trình (1) có \(\Delta=m^2-4\left(m-2\right)=m^2-4m+8>0\), mọi m và \(\left(-1\right)^2-m+m-2\ne0\)

nên d luôn cắt (C) tại 2 điểm phân biệt \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)

Ta có \(OA=\sqrt{2x_1^2+2mx_1+m^2}=\sqrt{2\left(x_1^2+mx_1+m-2\right)+m^2-2m+4}=\sqrt{m^2-2m+4}\)

Tương tự \(OB=\sqrt{m^2-2m+4}\)

yêu cầu bài toán \(\Leftrightarrow\begin{cases}\frac{2}{\sqrt{m^2-2m+4}}=1\\O\notin AB\end{cases}\) \(\Leftrightarrow\begin{cases}m^2-2m+4=4\\m\ne0\end{cases}\)\(\Leftrightarrow m=2\)

6 tháng 4 2016

Xét phương trình hoành độ giao điểm của đồ thị (C) và d :

\(\frac{2x+3}{x+2}=-2x+m\)\(\Leftrightarrow\begin{cases}x\ne-2\\2x^2+\left(6-m\right)x+3-2m=0\end{cases}\) (*)

Xét phương trình (*), ta có \(\Delta>0\), mọi \(m\in R\) và x=-2 không là nghiệm của (*) nên d luôn cắt đồ thị (C) tại 2 điểm phân biệt A, B với mọi m

Hệ số góc của tiếp tuyến tại A, tại B lần lượt là :

\(k_1=\frac{1}{\left(x_1+1\right)^2};k_2=\frac{1}{\left(x_2+1\right)^2}\) trong đó \(x_1,x_2\) là 2 nghiệm của phương trình (*)

Ta thấy :

\(k_1.k_2=\frac{1}{\left(x_1+1\right)^2.\left(x_2+1\right)^2}=\frac{1}{\left(x_1x_2+2x_1+2x_2+4\right)^2}=4\)  (\(k_1>0;k_2>0\) )

Có \(P=\left(k_1\right)^{2014}+\left(k_2\right)^{2014}\ge2\sqrt{\left(k_1k_2\right)^{2014}}=2^{2015}\)

Do đó , Min \(P=2^{2015}\) đạt được khi và chỉ khi \(k_1=k_2\)

\(\Leftrightarrow\frac{1}{\left(x_1+2\right)^2}=\frac{1}{\left(x_2+2\right)^2}\Leftrightarrow\left(x_1+2\right)^2=\left(x_2+2\right)^2\)

Do \(x_1,x_2\) phân biệt nên ta có \(x_1+2=-x_2-2\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow m=-2\)

Vậy giá trị cần tìm là \(m=-2\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

17 tháng 8 2018

7 tháng 5 2018

Nhận thấy: Giải bài 5 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 với mọi m.

Suy ra, giá trị cực tiểu luôn nhỏ hơn 0 với mọi m.

Dựa vào bảng biến thiên suy ra đường thẳng y = 0 (trục hoành) luôn cắt đồ thị hàm số tại 2 điểm phân biệt (đpcm).