\(\left|a\right|< 1,\left|b\right|< 1\) thì
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

bình phương 2 vế ta được a^2+b^2+2ab<(ab^2)+2ab+1

                                           (ab^2)+1-a^2-b^2>0

                                            (a^2-1)(b^2-1)>0

                            Mặt khác a^2<1 và b^2<1 (do trị tuyệt đối a và b nhỏ hơn 1)

                           suy ra đpcm  

                             k đúng cho mk nhé

8 tháng 11 2018

ta có : \(a^2+b^2+2ab< \left(ab^2\right)+2ab+1 \)\

\(ab^2+1-a^2-b^2>0 \)

\(\left(a^2-1\right)\left(b^2-1\right)>0\)

Mặt khác \(a^2< 1\)và \(b^2-1\) do \(\left|a\right|< 1,\left|b\right|< 1\)

Suy ra \(\left|a+b\right|< \left|1+ab\right|\)đpcm

2 tháng 8 2017

a)Áp dụng BĐT B.C.S:(1^2+1^2)(x^2+y^2)>=(1.x+1.y)^2>>>2(x^2+y^2)>=(x+y)^2.Sau đó chia 2 ở cả 2 vế.

Áp dụng BĐT Cô-si:(x+y)>=2√xy >>>>(x+y)^2/2>=2xy(đpcm)

b)a^2+1/(a^2+1)=a^2+1+1/(a^2+1)-1>=2-1=1(BĐT Cô-si)

c)a^2+b^2>=2ab suy ra (a^2+b^2)c>=2abc,tương tự rồi cộng lại là >=6abc nhé

d)ab/a+b<=(a+b)^2/4(a+b)(cm ở câu a)=(a+b)/4

Tương tự cộng lại được ab/a+b+bc/b+c+ca/c+a<=(a+b+b+c+c+a)/4=(a+b+c)/2(đpcm)

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

Lời giải:

a)

\(\sqrt{36(b-2)^2}=\sqrt{6^2(b-2)^2}=6\sqrt{(b-2)^2}=6|b-2|=6(2-b)\) do \(b<2\)

b)

\(\sqrt{b^2(b-1)^2}=\sqrt{b^2}\sqrt{(b-1)^2}=|b||b-1|\)

Do \(b< 0\Rightarrow b,b-1< 0\)

\(\Rightarrow \sqrt{b^2(b-1)^2}=|b||b-1|=-b(1-b)=b(b-1)\)

c) \(\sqrt{a^2(a+1)^2}=\sqrt{a^2}\sqrt{(a+1)^2}=|a||a+1|\)

\(=a(a+1)\) do \(a>0\)

d) \(\sqrt{(2a-1)^2}-4a=|2a-1|-4a\)

\(a< \frac{1}{2}\Rightarrow 2a-1< 0\)

\(\Rightarrow \sqrt{(2a-1)^2}-4a=|2a-1|-4a=(1-2a)-4a=1-6a\)