K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Giả sử  2016k + 3 = a3 với k và a là số nguyên.

Suy ra: 2016k  = a3 – 3

Ta thấy 2016k 7

Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3  

Thật vậy:  Ta biểu diễn a = 7m + r, với r .

Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.

Mà 2016k luôn chia hết cho 7,

 nên a3 – 3  2016k.

Bài toán được chứng minh

5 tháng 1 2019

no biet tao hoc lop 5 ma hoi lop 7,8

12 tháng 10 2017

Gọi 3 số nguyên liên tiếp là: a-1, a, a+1 
Giả sử b3= (a - 1)2+a2+(a + 1)2 
= 3a2+2 => chia 3 dư 2 
=> b chia 3 dư 2 => b=3k+2 
=> (3k + 2)3 = 3a+ 2 
=>27k^3+54k^2+36k+8=3a^2+2 
=>a2 = 9k(k+1)2+(3k+2) 
NX: ta có vế trái là một số chia 3 dư 2 
Mà vế phải là một số chính phương, nên chia 3 chỉ có 2 khả năng dư 1 hoăc dư 0=> vô lý 
vậy ta có điều cần phải C/m.

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

Lời giải:

Ta sẽ chứng minh , một số lập phương khi chia $7$ chỉ có thể có dư là \(0,1,6\)

Thật vậy: Xét số \(a^3\), có các TH sau:

+) \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)

+) \(a\equiv \pm 1\pmod 7\Rightarrow a^3\equiv \pm 1\pmod 7\)

\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)

+) \(a\equiv \pm 2\pmod 7\Rightarrow a^3\equiv \pm 8\pmod 7\)

\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)

+) \(a\equiv \pm 3\pmod 7\Rightarrow a^3\equiv \pm 27\pmod 7\)

\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)

Do đó, \(a^3\equiv 0,1,6\pmod 7\) (đpcm)

Mà \(2016k+3=7.288k+3\equiv 3\pmod 7\)

Cho nên , \(2016k+3\) không thể là lập phương của một số nguyên.

22 tháng 2 2018

Ta có n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z )

Ta thấy: n5 +1999n +2017 = n- n+2000n + 2015 +2 ( n E Z ) chia cho 5 dư 2

 vì không có số chính phương nào chia 5 dư 2 

 Vậy  n5 +1999n +2017 ( n E Z ) không phải là số chính phương