Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
2.
Từ giả thiết, ta có :
\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)
Tương tự, ta cũng có :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :
\(abcd\le\frac{1}{81}\left(đpcm\right)\)
2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)
\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)
Tương tự :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)
Từ đó suy ra:
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)
\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)
Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)
3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)
Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được
\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)
Từ (1) và (2) suy ra:
\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)
Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)
1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)
Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:
\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)
\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)
\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)
Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)
Bình thường A xđ \(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\ne0\)
Ta có \(x^2+4x+5=\left(x+2\right)^2+1\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow x^2+4x+5>1\)(1)
Lại có \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1>0\)(2)
(1)(2) \(\Rightarrow\left(x^2+1\right)\left(x^2+4x+5\right)>0\)hay \(\left(x^2+1\right)\left(x^2+4x+5\right)\ne0\)
\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
\(\Leftrightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\ge0\)
\(\Leftrightarrow\frac{4x^4y^4+x^4\left(x^2+y^2\right)^2+y^4\left(x^2+y^2\right)^2-3x^2y^2\left(x^2+y^2\right)^2}{x^2y^2\left(x^2+y^2\right)^2}\)
\(\Leftrightarrow4x^4y^4+x^4\left(x^4+2x^2y^2+y^4\right)+y^4\left(x^4+2x^2y^2+y^4\right)-3x^2y^2\left(x^4+2x^2y^2+y^4\right)\ge0\)
\(\Leftrightarrow4x^4y^4+x^8+2x^6y^2+x^4y^4+2x^2y^6+y^8-3x^6y^2-6x^4y^4-3x^2y^6\ge0\)
\(\Leftrightarrow x^8+y^8-x^6y^2-x^2y^6\ge0\)
\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\) ( luôn đúng )
\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y\)
\(x^2+4x+8=x^2+2.2x+4+4=\left(x+2\right)^2+4\\ \left(x+2\right)^2\ge0\forall x\\ =>\left(x+2\right)^2+4>4\left(>0\right)\forall x\\ =>x^2+4x+8>0\left(\forall x\right)\)
\(Ta\) \(có:\) \(x^2+4x+8\)
\(=x^2+4x+4+4\)
\(=\left(x+2\right)^2+4\)
\(mà:\) \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+4>0\) \(hay\) \(x^2+4x+8>0\) với mọi x
Đặt: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)
\(=x+y+\frac{2}{x+y}\)
\(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)
\(\Rightarrow A=B+C\)
Vì x, y > 0, áp dụng BĐT Cô-si, ta có:
\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)
Ta có: x, y > 0 => x + y > 0
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2
\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)
\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)
\(\Rightarrow A\ge3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)
=> ĐPCM
Áp dụng AM GM
\(4x-5+\frac{1}{x-1}=4\left(x-1\right)+\frac{1}{x-1}-1\ge2\sqrt{4\left(x-1\right).\frac{1}{x-1}}-1=3\)(đpcm)