Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chia làm 2 trường hợp
*Trường hơp 1: n chẵn
Nếu n chẵn => (n + 10)⋮2 => (n+10)(n+15)⋮2
*Trường hợp 2: n lẻ
Nếu n lẻ => (n + 15)⋮ 2 => (n+10)(n+15)⋮2
Vậy với mọi trường hợp n ∈ N thì (n+10)(n+15)⋮2
Ta có : \(7^{4n}-1=\left(7^4\right)^n-1=2401^n-1\)
Ta thấy 2401 tận cùng bằng 1 nên \(2401^n\)tận cùng bằng 1 nên \(2401^n-1\)tận cùng bằng 0 suy ra chia hết cho 5 nên \(7^{4n}-1\)chia hết cho 5
Vậy .......
ok , tiện thì kb :v
Ta có : 3^4n+1 + 2 => (....3) + 2
=> (.....5) chia hết cho 5
mình nhá ^^
n+5 chia hết n+1
=> (n+1)+4 chia hết n+1
Mà n+1 chia hết n+1
=> 4 chia hết n+1
=> n+1 thuộc Ư(4)={1;2;4;-1;-2;-4}
=> n thuộc { 0;1;3;-2;-3;-5}
a, \(A=\frac{a^3+a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+a\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi ƯCLN(a2 + a - 1,a2 + a + 1) là d
=> a2 + a - 1 chia hết cho d
a2 + a + 1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d
=> 2 chia hết cho d
=> d = {1;2}
Mà a2 + a - 1 = a(a + 1) - 1 là số lẻ nên d là số lẻ
=> d khác 2
=> d = 1
Vậy A là phân số tối giản (đpcm)
ta có 92n=34n=81n
ta có: ax-bx\(⋮\)a-b
+) 92n-1=34n-14n\(⋮\)3-1=2
+) 92n-1=81n-1n\(⋮\)81-1=80
mà 80\(⋮\)5
=>92n-1\(⋮\)5
=> đpcm
\(⋮\)
9^2n+1 + 1 chia hết 10
9^2n x 9 + 1 chia hết 10