Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a(b+c)-b(a+c)=b(a-c)-a(b-c)
(ab+ac)-(ab+bc)=(ab-bc)-(ab-ac)
ab+ac-ab-bc=ab-bc-ab+ac
ac-bc=-bc+ac
ac-bc=ac+(-bc)=ac-bc
ac-bc=ac-bc -> a(b+c)-b(a+c)=b(a-c)-a(b-c)
=> đpcm
~ HỌC TỐT ~
Theo đề ta có:
a(b+c) - b(a+c) = b(a-c) - a(b-c)
a.b + a.c - b.a - b.c = b.a - b.c - a.b + a.c
Rút gọn a.b và b.a ở vế 1; b.a và a.b ở vế 2 còn:
a.c - b.c = - b.c + a.c
a.c - b.c = a.c - b.c
=> a(b+c) - b(a+c) = b(a-c) - a(b-c)
Vế trái = ab +ac - ab - bc = ac - bc (1)
Vế phải = ab - bc - ab +ac= ac-bc (2)
Từ (1) và (2) suy ra VT=VP
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
Ta có: \(a\left(b+c\right)-b\left(a+c\right)=b\left(a-c\right)-a\left(b-c\right)\)
\(\Rightarrow ab+ac-ab-bc=ba-bc-ab+ac\)( Luôn đúng)
=> Đpcm
Nếu ko bn đến chỗ đó rồi:
\(ab+ac-ab-bc-ab+bc+ab-ac=0\)
=> Đpcm
Cách này cũng được nha
\(\text{Ta có:}\)
\(a\left(b+c\right)-b\left(a+c\right)=ab+ac-ba-bc=ac-bc\)
\(b\left(a-c\right)-a\left(b-c\right)=ab-bc-ab+ac=-bc+ac=ac-bc\)
\(\text{Vậy: }a\left(b+c\right)-b\left(a+c\right)=b\left(a-c\right)-a\left(b-c\right)\)