\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi

19 tháng 7 2017

tương đương too

7 tháng 6 2020

ae vứt 1 ab ra nha

16 tháng 2 2021

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ac+4c^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

Bất đẳng thức đúng vậy ta có điều phải chứng minh

16 tháng 2 2020

Ta có : \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow a^2+b^2+1\ge ab+a+b\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

16 tháng 2 2020

Cách khác : Dùng HĐT quen thuộc :

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(a^2+b^2\ge2ab\)

Cộng các vế của BĐT, rồi chia 2 ta được BĐT cần chứng minh.

29 tháng 12 2018

a.

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)

\(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)

Suy ra (*) đúng => đpcm

Dấu "=" xảy ra khi a = b

29 tháng 12 2018

b.

\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)

\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)

\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)

Theo câu a. thì điều này đúng

Dấu "=" khi a=b=c

AH
Akai Haruma
Giáo viên
24 tháng 9 2018

Lời giải:
Biến đổi tương đương:

\(a^2+b^2+c^2+d^2\geq ab+ac+ad\)

\(\Leftrightarrow 2a^2+2b^2+2c^2+2d^2\geq 2ab+2ac+2ad\)

\(\Leftrightarrow (\frac{a^2}{2}+2b^2-2ab)+(\frac{a^2}{2}+2c^2-2ac)+(\frac{a^2}{2}+d^2-2ad)+\frac{a^2}{2}\geq 0\)

\(\Leftrightarrow \frac{a^2+4b^2-4ab}{2}+\frac{a^2+4c^2-4ac}{2}+\frac{a^2+4d^2-4ad}{2}+\frac{a^2}{2}\geq 0\)

\(\Leftrightarrow \frac{(a-2b)^2}{2}+\frac{(a-2c)^2}{2}+\frac{(a-2d)^2}{2}+\frac{a^2}{2}\geq 0\)

(luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c=d=0$

4 tháng 9 2016

giả sử: a4 + b4+c4+1 > 2a( ab2-a+c+1) 
<=> a^4-2(ab)^2 + b^4 + a^2-2ac+c^2 + a^2-2a+1>0 ( bạn chuyển vế rùi tách ra như mình nha) 
<=> (a^2-b^2)^2 + (a-c)^2 + (a-1)^2 >0 (1) 
nhận thấy (a^2-b^2)^2>=0 
(a-c)^2>=0 
(a-1)^2 >= 0 
=> (1) luôn đúng

NM
7 tháng 2 2021

bài 1. ta có

\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Leftrightarrow b^2+ab+\frac{a^2}{4}+c^2+ac+\frac{a^2}{4}+d^2+ad+\frac{a^2}{4}+\frac{a^2}{4}\ge0\)

\(\Leftrightarrow\left(b+\frac{a}{2}\right)^2+\left(c+\frac{a}{2}\right)^2+\left(d+\frac{a}{2}\right)^2+\frac{a^2}{4}\ge0\) luôn đúng

Bài 2

ta có \(\frac{a^5}{b^5}+1+1+1+1\ge\frac{5.a}{b}\) (bất đẳng thức cauchy)

Tương tự ta có \(\frac{b^5}{c^5}+4\ge\frac{5b}{c};\frac{c^5}{a^5}+4\ge\frac{5c}{a}\)

\(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\)

Mà dễ dàng chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Nên ta có \(\Rightarrow\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge5\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-12\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

7 tháng 2 2021

bài 1 : \(^{a^2+B^2+C^2+D^2}\)>hoặc =ab+ac+ad 

\(^{a^2+b^2+c^2}\)- ab-ac-ad>hoặc = 0

\((\frac{1}{4}^{a^2-ab+b^2})+(\frac{1}{4}^{a^2-ac+c^2})+(\frac{1}{4}^{a^2-ad+d^2})\)>hoặc =0

\((\frac{1}{2}a-b)^2+(\frac{1}{2}a-c)^2+(\frac{1}{2}a-d)^2>=0\)

Vì \((\frac{1}{2}a-b)^2>=0\)với mọi \(A,b\varepsilon n\)

=> đpcm tự kết luận

2 tháng 12 2016

cậu là ai trả lời đi ròi tôi nói cho

2 tháng 12 2016

vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ

11 tháng 2 2019

Câu b search google bđt Min-cốp-xki thẳng tiến

4 tháng 2 2019

Chị ơi!