Chứng minh rằng: trong tam giác vuông, đường trung tuyến kẻ từ đỉnh góc vuông ứng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2024

A B C M D

Trên tia ssoois của MA lấy D sao cho DM=AM

Mà BM=CM (gt)

=> ABCD là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có \(\widehat{A}=90^o\)

=> ABCD là hình chữ nhật => AD=BC (trong HCN hai đường chéo bằng nhau)

Ta có

\(AM=\dfrac{AD}{2}\) mà \(AD=BC\left(cmt\right)\Rightarrow AM=\dfrac{BC}{2}\) 

Gọi tam giác vuông đề bài cho là ΔABC vuông tại A, đường trung tuyến AM

Trên tia đối của tia MA, lấy D sao cho MA=MD

Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

=>AB//DC

Ta có: AB//DC

AB\(\perp\)AC

Do đó: CD\(\perp\)CA

Xét ΔBAC vuông tại A và ΔDCA vuông tại C có

BA=DC

AC chung

Do đó: ΔBAC=ΔDCA

=>BC=DA

mà DA=2AM

nên BC=2AM

=>\(AM=\dfrac{1}{2}BC\)(ĐPCM)

19 tháng 4 2017

∆ABC vuông tại A => BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 25

BC = 5

Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = 1212 BC

Vì G là trọng tâm của ∆ ABC nên AG =2323 AM => AG =2323.1212 BC

=> AG = 1313 BC = 1313 .5 = 1.7cm

17 tháng 5 2018

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)

⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)

Gọi M là trung điểm của BC ⇒ AM là trung tuyến.

Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

25 tháng 3 2015

Gọi D là trung điểm BC; E là trung điểm AC

Trong tam giác ABC có BC2 = AB2 + AC2 = 32 + 42 = 25

=> BC = 5

Trong tam giác vuông ABC có AD là đường trung tuyến ứng với cạnh huyền BC nên AD = BD = CD

mà BD = CD = BC/2 = 5/2 = 2,5 nên AD = 2,5

Ta có AG/AD = 2/3 => AG = (AD.2)/3 = (2,5 x 2)/3 = 5/3

4 tháng 4 2016

+ Ta có \(BC^2=AB^2+AC^2=3^2+4^2=25\Rightarrow AC=5cm\)

+ Kẻ trung tuyến AM gọi G là trọng tâm cua tam giác ABC ta có

AG=2/3 AM mà AM=1/2 AC=2,5 cm => AG=(2/3).2,5=5/3 cm

16 tháng 3 2022

Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.

=>MA=MH=1/2AH(*)

ΔAMC=ΔBMH(c.g.c)ΔAMC=ΔBMH(c.g.c)

=>ˆCAM=ˆBHMCAM^=BHM^và AC=BH

Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH

=> AC // BH

mà AC L AB => BH L AB => ˆABH=90oABH^=90o

Xét ΔABCΔABCvàΔBAHΔBAHcó

AC=BC

ˆBAC=ˆABH=90oBAC^=ABH^=90o

cạnh chung AB

=> ΔABC=ΔBAH(c.g.c)ΔABC=ΔBAH(c.g.c)

=> BC=AH(**)

Lại có MB=MC=1/2BC(***)

Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)

16 tháng 3 2022

chứng minh cách lớp 7 hay 8 v

 

3 tháng 1 2016

Gọi D là trung điểm BC; E là trung điểm AC
Trong tam giác ABC có BC2 = AB2 + AC2 = 32 + 42 = 25
=> BC = 5
Trong tam giác vuông ABC có AD là đường trung tuyến ứng với cạnh huyền BC nên AD = BD = CD
mà BD = CD = BC/2 = 5/2 = 2,5 nên AD = 2,5
Ta có AG/AD = 2/3 => AG = (AD.2)/3 = (2,5 x 2)/3 = 5/3

24 tháng 9 2017

Xét tam giác ABC vuông tại A. Gọi K là trung điểm của BC,

Theo chứng minh phần a ta có: KA = KB = KC

Suy ra: KA = BC/2

Vậy tam giác ABC vuông tại A có đường trung tuyến AK bằng nửa cạnh huyền BC.

2 tháng 5 2016

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

Chúc thành công

2 tháng 5 2016

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

16 tháng 12 2017

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

20 tháng 2 2018

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền

xét tam giác ABC có:

AB2+AC2 = BC2 ( đ/lý py-ta-go)

=> 32 + 42 = BC2

=>   9  + 16  = BC2

=> BC = 25

=> BC = \(\sqrt{25}=5cm\)

tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)

=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)

hình như mk làm sai hoặc bn sai đề

để ghi lại khúc cuối

AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)

có \(5:2=\frac{5}{2}\) nên mới có 5/2