Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ giải hộ bạn câu 1 nhé. (Câu 2 tớ cũng đăng lên olm rồi <_>)
1. Giải
Gọi bốn số tự nhiên tùy ý là : A1; A2; A3; A4.
Khi chia : A1; A2; A3; A4 cho 3, ta được:
A1= 3 x k1 + r1 với: 0 ≥ r1 < 3
A2=3 x k2 + r2 với: 0 ≥ r2 < 3
A3=3 x k3 + r3 với: 0 ≥ r3 <3
A4=3 x k4 + r4 với: 0 ≥ r4 <3
Vì khi chia cho 3 các số dư r1; r2; r3; r4 chỉ nhận 1 trong 3 giá trị: 0; 1; 2. Nên chắc chắn có ít nhất 2 số bằng nhau.
Ta lấy: r1 = r23k2
=>Ta có: A1 - A2 = (3k1 + r1) - ( 3k2 + r2) = (3k1 -3k2) chia hết cho 3.
=>Trong bốn số tự nhiên tùy ý, có ít nhất 2 số có hiệu chia hết cho 3.
Có 4 số tự nhiên mà chỉ có 3 số dư (0 ; 1 ; 2) khi chia cho 3
Theo nguyên lý Đỉíchlê => tồn tại hai số có cùng số dư khi chia cho 3 => hiệu hai số đó chia hết cho 3 (đpcm)
CHÚNG TA CÓ TỔNG CỘNG 7 SỐ DƯ
TA LẤY 100 ĐỒNG DƯ VS 2 (MOD 7)MÀ 100/7=14(DƯ 2)
=>CHẮC CHẮN 2 SỐ ĐÓ SẼ CÙNG SỐ DƯ VS 14 SỐ TRONG CÁC SỐ DƯ
số chia cho 3 có số dư là 1 trong các số:0,1,2,3(3 loại số dư)
có 4 số mà chỉ có 3 loại số dư nên có ít nhất 2 số có cùng số dư khi chia cho 3 nên hiệu của 2 số đó phải chia hết cho 3
vậy ta đã chứng minh được bài toán
Ta chia 100 số tự nhiên đã cho thành 7 nhóm tương ứng chia hết cho 7, chia cho 7 dư 1, 2, 3, 4, 5, 6.
Ta có: 14.7 = 98 < 100 nên sẽ có ít nhất một nhóm có số phần tử trong đó ít nhất là 15.
Chọn nhóm đó thì ta có đpcm. (do các số trong nhóm đó có cùng số dư khi chia cho 7 nên hiệu 2 số bất kì chia hết cho 7)
Trong các số dư khi chia cho 3 thì có tất cả là ba số dư.
Mà theo đề bài thì có 4 số nên theo nguyên lí Đi - rích - lê thì có ít nhất 2 số đồng dư khi chia cho 3. Khi đó có ít nhất một hiệu của 2 số đồng dư đó chia hết cho 3.