Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
![](https://rs.olm.vn/images/avt/0.png?1311)
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
![](https://rs.olm.vn/images/avt/0.png?1311)
b) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4
=>ĐPCM
a)
gọi 3 số tự liên tiếp đó là a;a+1;a+2
ta có : a+[a+1]+[a+2]
=[a+a+a]+[1+2]
=3a + 3
=3 x [a+1] chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)
+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)
+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)
Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3
b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)
+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)
Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)
+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)
Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)
+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)
Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)
Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4
\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)
Nếu \(a⋮3\) thì bài toán được chứng minh
Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)
Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)
(vì \(3k⋮3\)và \(3⋮3\) nên\(3k+3⋮3\))
Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)
(vì \(3k⋮3\) và \(3⋮3\) nên \(3k+3⋮3\))
Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)
--> a.(a+1) là số chẵn --> a(a+1).(a+2) chia hết cho 2
--> a.(a+1).(a+2) là số chẵn --> a.(a+1).(a+2) chia hết cho 2
Vậy tích 3 STNLT thì chi hết cho 2(1)
1. TRƯỜNG HỢP 1 : a = 3.k
Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3
2. TRƯỜNG HỢP 2 : a = 3.k+1
Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)
= (3.k+1).(3.k+2).3.(k+1) chia hết cho 3
3.TRƯỜNG HỢP 3 : a = 3.k+2
Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)
= (3.k+2).(3.k+4).3.(k+1) chia hết cho 3
VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3(2)
Từ (1).(2) --> tích ba STNLT thì chia hết cho
Vào http://olm.vn/hoi-dap/question/4513.html tham khảo nhé!!