Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211
2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)
G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210
G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)
G = 211 - 2
G = 2048 - 2 (đpcm)
b,
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)
Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3
Đổi 4 thành 2 mũ 2
Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r
Dễ:đổi 4=22
B=22+23+24+...+220
ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)
= 221-22
Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá
A = 2 + 22 + 23 + ... + 210 (10 số hạng)
= (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)
= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)
= (1 + 2)(2 + 23 + ... + 29)
= 3(2 + 23 + ... + 29) \(⋮\)3
=> A \(⋮\)3
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
Câu 3:
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=3^2+3^3+...+3^{101}-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Mà: \(2A+3=3^N\)
\(\Rightarrow3^{101}-3+3=3^N\)
\(\Rightarrow3^{101}=3^N\)
\(\Rightarrow N=101\)
Vậy: ...
Câu 1:
\(A=4+2^2+...+2^{20}\)
Đặt \(B=2^2+2^3+...+2^{20}\)
=>\(2B=2^3+2^4+...+2^{21}\)
=>\(2B-B=2^3+2^4+...+2^{21}-2^2-2^3-...-2^{20}\)
=>\(B=2^{21}-4\)
=>\(A=B+4=2^{21}-4+4=2^{21}\) là lũy thừa của 2
Câu 6:
Đặt A=1+2+3+...+n
Số số hạng là \(\dfrac{n-1}{1}+1=n-1+1=n\left(số\right)\)
=>\(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(A⋮n+1\)
Câu 5:
\(A=5+5^2+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2
tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2
Chúc các bạn học tốt