Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011
4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)
= 5-1/5^2012
=> M = (5 - 1/5^2012)/4
Tk mk nha
Bài 1 :
b ) Vì A là tổng các số nguyên âm lẻ có hai chữ số .
\(\Rightarrow\)A = - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 )
Vì b tổng các số nguyên dương chẵn có hai chữ số .
\(\Rightarrow\) B = 10 + 12 + 14 + ... + 98
Vậy tổng A + b là :
\(\Rightarrow\) A + b = [ - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 ) ] + ( 10 + 12 + 14 + ... + 98 )
\(\Rightarrow\) A + b = ( 10 - 11 ) + ( 12 − 13 ) + ( 14 - 15 ) + ... + ( 98 - 99 )
\(\Rightarrow\) A + b = - 1 + ( - 1 ) + ( - 1 ) + . . + ( - 1 ) ( 50 số hạng )
\(\Rightarrow\) A + b = ( - 1 ) × 50
\(\Rightarrow\)A + b = - 50
\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)
+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số
+) Nếu p chia cho \(6\) dư \(1\) thì \(p=6k+1\)
+) Nếu p chia cho \(6\) dư \(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.
+) Nếu p chia cho \(6\) dư \(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.
+) Nếu p chia cho \(6\) dư \(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.
+) Nếu p chia cho \(6\) dư\(5\) thì \(p=6k+5\)
Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :
\(p=6k+1\) hoặc \(p=6k+5\)
b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.
Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.