Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhóm các hạng tử của tổng đã cho theo dạng sau:
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)
\(=\left(7+7^2+7^3+7^4\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)
\(=7\left(1+7+7^2+7^3\right)\left(1+7^4+7^8+...+7^{4k-4}\right)\)
\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}\right)=7.400.B\)
Vậy, \(A\) chia hết cho \(400\)
Ta có : \(A=7+7^2+7^3+...+7^{4k}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=\left(7+7^2+7^3+7^4\right)+...+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)
\(=\left(7+7^2+7^3+7^4\right)\left(1+...+7^{4k-4}\right)\)
\(=2800\left(1+...+7^{4k-4}\right)\)
\(=350.8\left(1+...+7^{4k-4}\right)⋮8\)
\(\Rightarrow A⋮8\left(1\right)\)
Ta lại có : \(A=7+7^2+7^3+...+7^{4k}\)
\(\Rightarrow7A=7^2+7^3+7^4+...+7^{4k+1}\)
\(\Rightarrow7A-A=\left(7^2+7^3+7^4+...+7^{4k+1}\right)-\left(7+7^2+7^3+....+7^{4k}\right)\)
hay \(6A=7^{4k+1}-7=7\left(7^{4k}-1\right)\)
Vì \(7\equiv2\left(mod5\right)\)\(\Rightarrow7^{4k}\equiv2^{4k}=16^k\left(mod5\right)\)
mà \(16\equiv1\left(mod5\right)\)\(\Rightarrow16^k\equiv1^k=1\left(mod5\right)\)
\(\Rightarrow7^{4k}\equiv1\left(mod5\right)\)
\(\Rightarrow7^{4k}-1⋮5\left(\cdot\right)\)
\(\Rightarrow7\left(7^{4k}-1\right)⋮5\)
\(\Rightarrow6A⋮5\)
Nhưng \(\left(6;5\right)=1\)
\(\Rightarrow A⋮5\left(2\right)\)
Ta lại có tiếp : \(7\equiv1\left(mod2\right)\)
\(\Rightarrow7^{4k}\equiv1^{4k}=1\left(mod2\right)\)
\(\Rightarrow7^{4k}-1⋮2\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\), \(\left(\cdot\cdot\right)\) và \(\left(2;5\right)=1\): \(\Rightarrow7^{4k}-1⋮10\)
\(\Rightarrow7\left(7^{4k}-1\right)⋮10\)
\(\Rightarrow6A⋮10\)
Nhưng \(\left(6;10\right)=1\)
\(\Rightarrow A⋮10\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)và \(\left(5;8;10\right)=1\)
\(\Rightarrow A⋮400\left(đpcm\right)\)
\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)
\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)
\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)
=> đpcm
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(A=\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+7^{4k-4}\left(7+7^2+7^3+7^4\right)\)
\(A=\left(7+7^2+7^3+7^4\right)\left(1+7+7^4+7^8+...+7^{4k-4}\right)\)
\(A=7\left(1+7+49+343\right)\left(1+7^4+7^8+...+7^{4k-4}=7.400.M\right)\)
vậy \(A⋮400\)