Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
Ta thấy : 3 số tự nhiên liên tiếp luôn có 1 số là bội của 3
=> Tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> đpcm
1: A) Số đó là: 102
B) Số đó là 108
2: A). Gọi 3 số đó là a; a + 1; a + 2
Ta có: a + a + 1 + a + 2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a + 3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
B) Mình chịu vì mình không biết làm. Xin lỗi bạn
~ Chúc bạn học tốt ~
1
a) 102
b ) 108
2
a) ví dụ
1+2+3=6'
4+5+6=15
6+7+8=21
b)
1x2x3=6
2 x 3 x 4 = 24
3 x 4 x 5 =60
nhớ k cho mình nha
Gọi 3 số tự nhiên liên tiếp đó là a, a+1, a+2
Ta có tích sau
a.(a+1).(a+2)=a(1+2)=4.3
=> tích của 3 số tự nhiên liên tiếp chia hết cho 3
k mik nha
Gọi 3 số tự nhiên liên tiếp là n ; n + 1 ; n + 2
Xét các giá trị là số tự nhiên
=> có 2 trường hợp
Th1 : n là số lẻ (n = 2k + 1 với k thuộc N)
=> n + n + 1 + n + 2
= 2k + 1 + 2k + 1 + 1 + 2k + 1 + 2
= 6k + (1 + 1 + 1 + 1 + 2)
= 6k + 6
= 3(2k + 2) chia hết cho 3 (1)
Với n là số chẵn (n = 2k với k thuộc N)
=> 2k + 2k + 1 + 2k + 2
= 6k + 3
= 3.(2k + 1) chia hết cho 3 (2)
Từ (1) và (2)
=> Với mọi n thuộc N , 3 số tự nhiên liên tiếp luôn chia hết cho 3
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
Gọi số đề bài cho là: a(a+1)(a+2) (a khác 0; a là chữ số)
Ta thấy: a + (a + 1) + (a + 2)
= a + a + 1 + a + 2
= 3a + 3
= 3.(a + 1) chia hết cho 3
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3
=> a(a+1)(a+2) chia hết cho 3 (đpcm)
Ta có các số chia hết cho 3 có tổng các số : 3 . Ta gọi chữ số đầu tiên của số đó là a , ta có :
Tổng các chữ số cuả số đó = a + a + 1 + a + 2
= a . 3 + [ 1 + 2 ]
= a . 3 + 3
Vì a . 3 chia hết cho 3 , 3 chia hết cho 3 nên a . 3 + 3 chia hết cho 3 . Tổng các chữ số chia hết cho 3 nên số đó chia hết cho 3
Một số có 3 chữ số và các số của nó là các số tự nhiên liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp lần lượt là: n, n+1, n+2
Ta có: n+ (n+1) + (n+2) = 3n + 3 = 3(n+1) chia hết cho 3
gọi 3 số tự nhiên liên tiếp là: a,a+1,a+2
tổng 3 số=a+a+1+a+2=3a+3
3a chia hết 3;3 chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp bất kì đều chia hết cho 3