Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân 8 vào hai vế:
Cần chứng minh \(\left(x+y\right)\left(y+z\right)\left(z+x\right).2x.2y.2z\le\frac{64}{729}\)
Áp dụng BĐT Cô si ngược cho 6 số dương (tự c/m:v) vào VT ta có đcpm.
Đẳng thức xảy ra khi x = y = z = 1/3
Áp dụng bất đẳng thức Cauchy ngược là sao ạ? Bạn ví dụ cụ thể với....
a) \(ĐKXĐ:x,y\ne0;x\ne\pm y\)
Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x+y\right)^2}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{x^2.\left(x^2-y^2\right)}{\left(x^2-y^2\right).\left(x^2-y^2\right)}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x^2+2xy+y^2\right)-2x^2y-x^2.\left(x^2-y^2\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\right]\)
\(=\frac{y-x}{xy}:\left[\frac{x^2y^2+y^4+2xy^3-2x^2y-x^4+x^2y^2}{\left(x-y\right)^2\left(x+y\right)^2}\right]\)
Đề này lỗi mình nghĩ vậy vì trên tử kia không đẹp lắm.....
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
Rõ ràng cặp (x;y) =(t;0) với t \(\inℤ\)là một nghiệm của phương trình
Xét trường hợp y\(\ne\)0, khi đó ta viết được phương trình dưới dạng
\(2y^2+\left(x^2-3x\right)y+\left(3x^2+x\right)=0\)(1)
Xem đây là phương trình bậc hai ẩn y. Biệt thức \(\Delta\)của nó bằng
\(\left(x^2-3x\right)^2-8\left(3x^2+x\right)=\left(x^2-8x\right)\left(x+1\right)^2\)
Đến đây phương trình (1) có nghiệm y nguyên điều kiện cần là \(\Delta\)phải là số thích phương. Từ đây ta có các TH sau
TH1: x=-1 thay vào (1) ta tính được y=-1
TH2: x\(\ne\)-1, x2-8x=a2(a\(\in\)N) Lúc này ta có: (x-4)2-a2=16 hay [|x-4|-a][|x-4|+a]=16
Dễ dàng tìm được x=0 (tương ứng ới y=0, loại), x=8 (tương ứng với y=-10) và x=9 (tương ứng y=-6 hoặc y=-21)
Vậy tập nghiệm phương trình đã cho là: S={(t;0);(8;-10);(9;-6);(-1;-1)} (t\(\in\)Z)