Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:\(\left(\dfrac{x\sqrt{x}-3\sqrt{3x}}{x-27}+\dfrac{x^3-x^2+x}{3\sqrt{3x}+x\sqrt{x}}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)= 1
Biến đổi vế trái ta được:
VT=\(\left(\dfrac{(x\sqrt{x}-3\sqrt{3x)}\times\left(3\sqrt{3x}+x\sqrt{x}\right)}{(x-27)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}+\dfrac{\left(x-27\right)\times(x^3-x^2+x)}{\left(x-27\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\left(\dfrac{x^3-27x^2}{\left(x-27\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}+\dfrac{\left(x-27\right)\times\left(x^3-x^2+x\right)}{\left(x-27\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\left(\dfrac{x^2}{3\sqrt{3x}+x\sqrt{x}}+\dfrac{x^3-x^2+x}{3\sqrt{3x}+x\sqrt{x}}\right)\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\dfrac{x^3+x}{3\sqrt{3x}+x\sqrt{x}}\div\dfrac{x^2+1}{\sqrt{x}+3\sqrt{3}}\)
=\(\dfrac{(x^3+x)\times\left(\sqrt{x}+3\sqrt{3}\right)}{(3\sqrt{3x}+x\sqrt{x})\times(x^2+1)}\)
=\(\dfrac{x\times\left(x^2+1\right)\times\left(\sqrt{x}+3\sqrt{3}\right)}{\left(x^2+1\right)\times\left(3\sqrt{3x}+x\sqrt{x}\right)}\)
=\(\dfrac{x\times\left(\sqrt{x}+3\sqrt{3}\right)}{\sqrt{x}\times\left(x+3\sqrt{3}\right)}\)
=\(\dfrac{x\times\left(\sqrt{x}+3\sqrt{3}\right)}{x\times\left(\sqrt{x}+3\sqrt{3}\right)}\)= 1 =VP
Vậy đẳng thức được chứng minh
\(\Leftrightarrow4=0^2-\left(x^4+y^3\right)\)
\(\Leftrightarrow\left(0+\sqrt{x^4+y^3}\right)\left(0-\sqrt{x^4+y^3}\right)=4=1.4=4.1=2.2\)(Vì \(\left(0+\sqrt{x^4+y^3}\right)\)>=0)
Đến đây giải từng TH ta thấy x,y ko nguyên nên kết luận.
Còn cách nào khác không vậy? Nguyễn Việt Lâm
(y + 6x)/y
= (3x + 6x)/(3x)
= (9x)/(3x)
= 3 (1)
y/x = 3x/x = 3 (2)
Từ (1) và (2) suy ra
(y + 6x)/y = y/x (cùng bằng 3)
Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)
\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)
\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)
\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)
\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)
\(=f\left(x\right).f\left(x+1\right)\)
Thay \(x=2021\)
\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)
Đặt \(f\left(2021\right)+2021=k\)
Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên
\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên
Hay tồn tại số nguyên k thỏa mãn yêu cầu