K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2022

ko bt lm

 

AH
Akai Haruma
Giáo viên
7 tháng 5 2020

Lời giải:

\(A=2(9^{2009}+9^{2008}+....+9+1)\)

\(9A=2(9^{2010}+9^{2009}+...+9^2+9)\)

Trừ theo vế:
\(8A=2(9^{2010}-1)\Rightarrow A=\frac{9^{2010}-1}{4}=\frac{(9^{1005}-1)(9^{1005}+1)}{4}\)

\(=\frac{9^{1005}-1}{2}.\frac{9^{1005}+1}{2}\)

Thấy rằng \(9^{1005}-1\vdots 9-1\vdots 2\Rightarrow \frac{9^{1005}-1}{2}\in\mathbb{N}\); \(9^{1005}+1\vdots 9+1\vdots 2\Rightarrow \frac{9^{1005}+1}{2}\in\mathbb{N}\)

\(\frac{9^{1005}+1}{2}-\frac{9^{1005}-1}{2}=1\) nên đây là 2 số tự nhiên liên tiếp.

Do đó $A$ là tích của 2 số tự nhiên liên tiếp (đpcm)

14 tháng 2 2017

TH1:Nếu x>0

nếu y\(\ne\)0, ta có: \(VT>2012.1^{2015}+2013.1^{2018}>2015\)

nếu y=0, ta có : nếu x=1, VT=2012<2015

                        nếu x>1, \(VT>2012.2^{2015}+2013.0^{2018}>2015\)

TH2: nếu x=0, pt vô nghiệm

TH3: nếu x<0, ta có: \(2013y^{2018}+2012x^{2015}=2012\left(y^{2018}-x^{2015}\right)+y^{2018}\)

ta thấy x<0 nên VT>2012.(1+1)+1>2015

Vậy pt trên không có nghiệm nguyên