Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta áp dụng công thức: Nếu đem nhốt n+1 con thỏ vào n loongfthif sẽ có ít nhất 1 cái lồng nhốt từ 2 con thỏ trở lên
Áp dụng công thức trên để chứng minh \(n\in N\) cho 17n -1 \(⋮\) 25
Xét 26 con thỏ là 26 số: 17k;17k+1; ...;17k+25
Đem 26 số trên chia cho 25 ta sẽ có 26 số dư từ: 0;1;2;.....;24 (có 25 giá trị)
Nên sẽ có 2 số dư bằng nhau và trong 26 số trên có 2 số đồng dư với nhau khi chia cho 25
\(\Rightarrow\) Hiệu của 2 số đó chia hết cho 25
Hiệu 2 số có dang: 17x - 17y chia hết cho 25 ( x > y )
17y.(17x-y-1) chia hết cho 25
Mà 17y không chia hết cho 25 nên 17x-y chia hết cho 25
Đặt n=x-y nên \(17^n-1⋮25\) (đpcm)
n + 7 chia hết cho n - 7
n - 7 + 14 chia hết cho n - 7
14 chia hết cho n - 7
n - 7 thuộc Ư(14) = {-14; -7;-2;-1;1;2;7;14}
n - 7 = -14 => n =-7
n - 7 = -7 => n = 0
n - 7 = -2 => n =5
n - 7 = -1 => n = 6
n - 7 = 1 => n = 8
n - 7 = 2 => n = 9
n - 7 = 7 => n = 14
n - 7 = 14 => n = 21
Mà n là số tự nhiên
Vậy n thuộc {0;5;6;8;9;14;21}
Xét ba số tự nhiên liên tiếp là 17^n;17^n +1 và 17^n +2
Vì trong ba số liên tiếp Cómột số chia hết cho 3 mà 17^n Không chia hết cho 3 nên 17^n +1 cha hết cho 3 hoặc 17^n +2 chia hết cho 3. Do đó tích : A=(17^n +1)*(17^n +2) chia hết cho 3 với mọi n là số tự nhiên
Vậy A chia hết cho ba với mọi n là số tự nhiên
Ta có :
\(17^n+1=\left(17+1\right)\left(17^{n-1}-17^{n-2}+17^{n-3}-......+17^2-17+1\right)\)
\(=18\left(17^{n-1}-17^{n-2}+17^{n-3}-.....+17^2-17+1\right)⋮3\)
Do đó : \(\left(17^n+1\right)\left(17^n+2\right)⋮3\) (ĐPCM)
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Với n = 0
\(\Rightarrow3.5^{2.0+1}+2^{3.0+1}=3.5+2=15+2=17⋮17\Rightarrow\)đúng với n = 0
Giả sử \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k \(\in\) N*
\(\Rightarrow3.5^{2k+1}+2^{3k+1}⋮17\)
C/m : \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k + 1 ( k \(\in\) N* )
Ta có :
\(3.5^{2n+1}+2^{3n+1}=3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}\)
\(=3.25.5^{2k+1}+8.3^{3k+1}=3.25.5^{2k+1}+25.2^{3k+1}-17.2^{3k+1}\)
\(=25\left(3.5^{2k+1}+2^{3k+1}\right)-17.2^{3k+1}\)
Vì : \(17.2^{3k+1}⋮17\) ; \(3.5^{2k+1}+2^{3k+1}⋮17\) theo phương pháp quy nạp
\(\Rightarrow3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}⋮17\)
Vậy ...