\(17^n\) - 1 chia hết cho 25

Giả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Ta áp dụng công thức: Nếu đem nhốt n+1 con thỏ vào n loongfthif sẽ có ít nhất 1 cái lồng nhốt từ 2 con thỏ trở lên

Áp dụng công thức trên để chứng minh \(n\in N\) cho 17n -1 \(⋮\) 25

Xét 26 con thỏ là 26 số: 17k;17k+1; ...;17k+25

Đem 26 số trên chia cho 25 ta sẽ có 26 số dư từ: 0;1;2;.....;24 (có 25 giá trị)

Nên sẽ có 2 số dư bằng nhau và trong 26 số trên có 2 số đồng dư với nhau khi chia cho 25

\(\Rightarrow\) Hiệu của 2 số đó chia hết cho 25

Hiệu 2 số có dang: 17x - 17y chia hết cho 25 ( x > y )

17y.(17x-y-1) chia hết cho 25

Mà 17y không chia hết cho 25 nên 17x-y chia hết cho 25

Đặt n=x-y nên \(17^n-1⋮25\) (đpcm)

18 tháng 2 2017

Ta có 0,7(\(19^{5^{2007}}\)+\(2007^{2008^{2009}}\))= \(\frac{7\left(19^{5^{2007}}+2007^{2008^{2009}}\right)}{10}\)

\(19^{5^{2007}}\)= \(19^{\left(............5\right)}\)= (..............9)

\(2007^{2008^{2009}}\)= 20074k= (............1)

=> \(19^{5^{2007}}\)+ \(2007^{2008^{2009}}\)= (............0)

=> 7(\(19^{5^{2007}}\)+ \(2007^{2008^{2009}}\)) = (............0) \(⋮\)10

Vậy 0,7(\(19^{5^{2007}}\)+\(2007^{2008^{2009}}\)) là một số tự nhiên

18 tháng 2 2017

ai ta

17 tháng 2 2017

Nếu \(\frac{7n^2+1}{6}\) là số tự nhiên với n thuộc N thì n/2(*) và n/3(**) là phân số tối giải:

Ta có:\(\frac{7n^2+1}{6}=\) \(\frac{6n^2+n^2+1}{6}=n^2+\frac{n^2+1}{6}\) \(\Rightarrow\left(n^2+1\right)⋮6\)

=> n2 phải là số lẻ=> n phải là số lẻ => không chia hết cho 2=> (*) được c/m.

g/s: n chia hết cho 3 => n=3k

{với k phải lẻ, nếu k chẵn => n chẵn=>k=2t+1=> n=3(2k+1)=6t+3}

=>\(\frac{n^2+1}{6}=\frac{\left(6t+3\right)^2+1}{6}=\frac{36t^2+36t+9+1}{6}=6t^2+6t+\frac{10}{6}\left(1\right)\)

(1) không nguyên với mọi t => điều g/s là sai=> (**) được c/m

17 tháng 2 2017

Thanhks bn nhìu!!

6 tháng 4 2019

\(\frac{x}{6}\)-\(\frac{1}{12}\)=\(\frac{2}{y}\)

\(\rightarrow\)\(\frac{2x}{12}\)-\(\frac{1}{12}\)=\(\frac{2}{y}\)

\(\rightarrow\)\(\frac{2x-1}{12}\)=\(\frac{2}{y}\)

\(\Rightarrow\)(2x-1).y=12.2=24 nên 2x-1 và y\(\in\)Ư(24) mà Ư(24)={1;-1;2;-2;3;-3;4;-4;6;-6;8;-8;12;-12;24;-24}

vì 2x-1 là số lẻ nên 2x-1={+_1;+_3}nên ta có bảng:

2x-1 1 -1 3 -3
y 24 -24 8 -8
x 1 0 2 -1

vậy x,y\(\in\){(1;24)(0;-24)(8;2)(-8;-1)

\(\Leftrightarrow n^2+4n+3n+12-10⋮n+4\)

\(\Leftrightarrow n+4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(n\in\left\{1;6\right\}\)

9 tháng 4 2017

Xét ba số tự nhiên liên tiếp là 17^n;17^n +1 và 17^n +2

Vì trong ba số liên tiếp Cómột số chia hết cho 3 mà 17^n Không chia hết cho 3 nên 17^n +1 cha hết cho 3 hoặc 17^n +2 chia hết cho 3. Do đó tích : A=(17^n +1)*(17^n +2) chia hết cho 3 với mọi n là số tự nhiên

Vậy A chia hết cho ba với mọi n là số tự nhiên

9 tháng 4 2017

Ta có :

\(17^n+1=\left(17+1\right)\left(17^{n-1}-17^{n-2}+17^{n-3}-......+17^2-17+1\right)\)

\(=18\left(17^{n-1}-17^{n-2}+17^{n-3}-.....+17^2-17+1\right)⋮3\)

Do đó : \(\left(17^n+1\right)\left(17^n+2\right)⋮3\) (ĐPCM)